Onset of Plasticity via Relaxation Analysis (OPRA)
In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in th...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2016-07, Vol.56 (6), p.1095-1107 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1107 |
---|---|
container_issue | 6 |
container_start_page | 1095 |
container_title | Experimental mechanics |
container_volume | 56 |
creator | Pandey, A. Wheeler, R. Shyam, A. Stoughton, T. B. |
description | In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objective observation of the very onset of plastic flow. Our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load. |
doi_str_mv | 10.1007/s11340-016-0152-3 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1360017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11340_016_0152_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-281d819656e74749a1bd474996f77e93e479389911cc061798a7e15b66b00ee3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFc_gLfiSQ_RTJMmzXFZ_AcLXZa9hzQ71S61lU4V99ubUs8ehnd5v-G9x9g1iHsQwjwQgFSCC9Dx8ozLE5aAUcAzo_NTlggBiqsih3N2QXQQkZEmS1hWdoRj2tfppvU0NqEZj-l349Mttv7Hj03fpcvOt0dqKL0tN9vl3SU7q31LePWnC7Z7etytXvi6fH5dLdc8yLwYeVbAvgCrc41GGWU9VPtJra6NQStRGSsLawFCEBqMLbxByCutKyEQ5YLdzG_7GMtRDIbhPfRdh2F0IHVsZKIJZlMYeqIBa_c5NB9-ODoQbhrGzcO4OIybhnEyMtnMUPR2bzi4Q_81xI70D_QLE2tiVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Onset of Plasticity via Relaxation Analysis (OPRA)</title><source>SpringerNature Journals</source><creator>Pandey, A. ; Wheeler, R. ; Shyam, A. ; Stoughton, T. B.</creator><creatorcontrib>Pandey, A. ; Wheeler, R. ; Shyam, A. ; Stoughton, T. B. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objective observation of the very onset of plastic flow. Our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-016-0152-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Dynamical Systems ; elastic limit ; Engineering ; Lasers ; MATERIALS SCIENCE ; microtesting ; mobile dislocation ; Optical Devices ; Optics ; Photonics ; Solid Mechanics ; Vibration ; yield stress ; yield surface</subject><ispartof>Experimental mechanics, 2016-07, Vol.56 (6), p.1095-1107</ispartof><rights>Society for Experimental Mechanics 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-281d819656e74749a1bd474996f77e93e479389911cc061798a7e15b66b00ee3</citedby><cites>FETCH-LOGICAL-c358t-281d819656e74749a1bd474996f77e93e479389911cc061798a7e15b66b00ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-016-0152-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-016-0152-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1360017$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, A.</creatorcontrib><creatorcontrib>Wheeler, R.</creatorcontrib><creatorcontrib>Shyam, A.</creatorcontrib><creatorcontrib>Stoughton, T. B.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Onset of Plasticity via Relaxation Analysis (OPRA)</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objective observation of the very onset of plastic flow. Our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>elastic limit</subject><subject>Engineering</subject><subject>Lasers</subject><subject>MATERIALS SCIENCE</subject><subject>microtesting</subject><subject>mobile dislocation</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Solid Mechanics</subject><subject>Vibration</subject><subject>yield stress</subject><subject>yield surface</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFc_gLfiSQ_RTJMmzXFZ_AcLXZa9hzQ71S61lU4V99ubUs8ehnd5v-G9x9g1iHsQwjwQgFSCC9Dx8ozLE5aAUcAzo_NTlggBiqsih3N2QXQQkZEmS1hWdoRj2tfppvU0NqEZj-l349Mttv7Hj03fpcvOt0dqKL0tN9vl3SU7q31LePWnC7Z7etytXvi6fH5dLdc8yLwYeVbAvgCrc41GGWU9VPtJra6NQStRGSsLawFCEBqMLbxByCutKyEQ5YLdzG_7GMtRDIbhPfRdh2F0IHVsZKIJZlMYeqIBa_c5NB9-ODoQbhrGzcO4OIybhnEyMtnMUPR2bzi4Q_81xI70D_QLE2tiVg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Pandey, A.</creator><creator>Wheeler, R.</creator><creator>Shyam, A.</creator><creator>Stoughton, T. B.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160701</creationdate><title>Onset of Plasticity via Relaxation Analysis (OPRA)</title><author>Pandey, A. ; Wheeler, R. ; Shyam, A. ; Stoughton, T. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-281d819656e74749a1bd474996f77e93e479389911cc061798a7e15b66b00ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>elastic limit</topic><topic>Engineering</topic><topic>Lasers</topic><topic>MATERIALS SCIENCE</topic><topic>microtesting</topic><topic>mobile dislocation</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Solid Mechanics</topic><topic>Vibration</topic><topic>yield stress</topic><topic>yield surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, A.</creatorcontrib><creatorcontrib>Wheeler, R.</creatorcontrib><creatorcontrib>Shyam, A.</creatorcontrib><creatorcontrib>Stoughton, T. B.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, A.</au><au>Wheeler, R.</au><au>Shyam, A.</au><au>Stoughton, T. B.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Onset of Plasticity via Relaxation Analysis (OPRA)</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>56</volume><issue>6</issue><spage>1095</spage><epage>1107</epage><pages>1095-1107</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objective observation of the very onset of plastic flow. Our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-016-0152-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 2016-07, Vol.56 (6), p.1095-1107 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_osti_scitechconnect_1360017 |
source | SpringerNature Journals |
subjects | Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Control Dynamical Systems elastic limit Engineering Lasers MATERIALS SCIENCE microtesting mobile dislocation Optical Devices Optics Photonics Solid Mechanics Vibration yield stress yield surface |
title | Onset of Plasticity via Relaxation Analysis (OPRA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Onset%20of%20Plasticity%20via%20Relaxation%20Analysis%20(OPRA)&rft.jtitle=Experimental%20mechanics&rft.au=Pandey,%20A.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2016-07-01&rft.volume=56&rft.issue=6&rft.spage=1095&rft.epage=1107&rft.pages=1095-1107&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-016-0152-3&rft_dat=%3Ccrossref_osti_%3E10_1007_s11340_016_0152_3%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |