A regime-dependent artificial neural network technique for short-range solar irradiance forecasting
Solar power can provide substantial power supply to the grid; however, it is also a highly variable energy source due to changes in weather conditions, i.e. clouds, that can cause rapid changes in solar power output. Independent systems operators (ISOs) and regional transmission organizations (RTOs)...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2016-04, Vol.89 (C), p.351-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | C |
container_start_page | 351 |
container_title | Renewable energy |
container_volume | 89 |
creator | McCandless, T.C. Haupt, S.E. Young, G.S. |
description | Solar power can provide substantial power supply to the grid; however, it is also a highly variable energy source due to changes in weather conditions, i.e. clouds, that can cause rapid changes in solar power output. Independent systems operators (ISOs) and regional transmission organizations (RTOs) monitor the demand load and direct power generation from utilities, define operating limits and create contingency plans to balance the load with the available power generation resources. ISOs, RTOs, and utilities will require solar irradiance forecasts to effectively and efficiently balance the energy grid as the penetration of solar power increases. This study presents a cloud regime-dependent short-range solar irradiance forecasting system to provide 15-min average clearness index forecasts for 15-min, 60-min, 120-min and 180-min lead-times. A k-means algorithm identifies the cloud regime based on surface weather observations and irradiance observations. Then, Artificial Neural Networks (ANNs) are trained to predict the clearness index. This regime-dependent system makes a more accurate deterministic forecast than a global ANN or clearness index persistence and produces more accurate predictions of expected irradiance variability than assuming climatological average variability.
•We forecast solar irradiance for short-range predictions of 15 min–180 min.•We develop a regime-dependent artificial neural network forecasting system.•K-Means on surface weather and irradiance observations identifies cloud regimes.•Lower forecast error than either a smart persistence or global ANN.•Regime-dependent ANN can be used to predict irradiance variability. |
doi_str_mv | 10.1016/j.renene.2015.12.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1359816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148115305346</els_id><sourcerecordid>1768581969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-49a40e3fb588c32f94d75baded20b8196e774317895e1730518ef8f570349573</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EEkvhH3CIOHFJ6omd2L4gVRUFpEq99G55ncnWS9Zexl4Q_x6n4YzQHObyvZk38xh7D7wDDuP1sSOMtbqew9BB33HBX7AdaGVaPur-JdtxM_IWpIbX7E3OR15BreSO-ZuG8BBO2E54xjhhLI2jEubgg1uaiBd6buVXou9NQf8Uw48LNnOiJj8lKi25eMAmp8VRE4jcFFz0zwB6l0uIh7fs1eyWjO_-9iv2ePf58fZre__w5dvtzX3rpR5LK42THMW8H7T2op-NnNSwdxNOPd9rMCMqJQUobQYEJfgAGmc9D4oLaQYlrtiHbWyqW232YXXrU4zoiwUxGA1jhT5u0JlSvSMXewrZ47K4iOmSLSgjeqmgV_-BjnpYfZmKyg31lHImnO2ZwsnRbwvcrhHZo90ismtEFnpbI6qyT5sM61d-BqTVNdbvTYFW01MK_x7wBzCUm9k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768581969</pqid></control><display><type>article</type><title>A regime-dependent artificial neural network technique for short-range solar irradiance forecasting</title><source>Elsevier ScienceDirect Journals</source><creator>McCandless, T.C. ; Haupt, S.E. ; Young, G.S.</creator><creatorcontrib>McCandless, T.C. ; Haupt, S.E. ; Young, G.S.</creatorcontrib><description>Solar power can provide substantial power supply to the grid; however, it is also a highly variable energy source due to changes in weather conditions, i.e. clouds, that can cause rapid changes in solar power output. Independent systems operators (ISOs) and regional transmission organizations (RTOs) monitor the demand load and direct power generation from utilities, define operating limits and create contingency plans to balance the load with the available power generation resources. ISOs, RTOs, and utilities will require solar irradiance forecasts to effectively and efficiently balance the energy grid as the penetration of solar power increases. This study presents a cloud regime-dependent short-range solar irradiance forecasting system to provide 15-min average clearness index forecasts for 15-min, 60-min, 120-min and 180-min lead-times. A k-means algorithm identifies the cloud regime based on surface weather observations and irradiance observations. Then, Artificial Neural Networks (ANNs) are trained to predict the clearness index. This regime-dependent system makes a more accurate deterministic forecast than a global ANN or clearness index persistence and produces more accurate predictions of expected irradiance variability than assuming climatological average variability.
•We forecast solar irradiance for short-range predictions of 15 min–180 min.•We develop a regime-dependent artificial neural network forecasting system.•K-Means on surface weather and irradiance observations identifies cloud regimes.•Lower forecast error than either a smart persistence or global ANN.•Regime-dependent ANN can be used to predict irradiance variability.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2015.12.030</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Artificial neural network ; Artificial neural networks ; Balancing ; Climatology ; Clouds ; Irradiance ; Irradiance variability ; Learning theory ; m-Means clustering ; Neural networks ; Regime-dependent prediction ; Solar irradiance ; Solar power generation</subject><ispartof>Renewable energy, 2016-04, Vol.89 (C), p.351-359</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-49a40e3fb588c32f94d75baded20b8196e774317895e1730518ef8f570349573</citedby><cites>FETCH-LOGICAL-c486t-49a40e3fb588c32f94d75baded20b8196e774317895e1730518ef8f570349573</cites><orcidid>0000-0002-2068-4193 ; 0000000220684193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148115305346$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1359816$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McCandless, T.C.</creatorcontrib><creatorcontrib>Haupt, S.E.</creatorcontrib><creatorcontrib>Young, G.S.</creatorcontrib><title>A regime-dependent artificial neural network technique for short-range solar irradiance forecasting</title><title>Renewable energy</title><description>Solar power can provide substantial power supply to the grid; however, it is also a highly variable energy source due to changes in weather conditions, i.e. clouds, that can cause rapid changes in solar power output. Independent systems operators (ISOs) and regional transmission organizations (RTOs) monitor the demand load and direct power generation from utilities, define operating limits and create contingency plans to balance the load with the available power generation resources. ISOs, RTOs, and utilities will require solar irradiance forecasts to effectively and efficiently balance the energy grid as the penetration of solar power increases. This study presents a cloud regime-dependent short-range solar irradiance forecasting system to provide 15-min average clearness index forecasts for 15-min, 60-min, 120-min and 180-min lead-times. A k-means algorithm identifies the cloud regime based on surface weather observations and irradiance observations. Then, Artificial Neural Networks (ANNs) are trained to predict the clearness index. This regime-dependent system makes a more accurate deterministic forecast than a global ANN or clearness index persistence and produces more accurate predictions of expected irradiance variability than assuming climatological average variability.
•We forecast solar irradiance for short-range predictions of 15 min–180 min.•We develop a regime-dependent artificial neural network forecasting system.•K-Means on surface weather and irradiance observations identifies cloud regimes.•Lower forecast error than either a smart persistence or global ANN.•Regime-dependent ANN can be used to predict irradiance variability.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Balancing</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Irradiance</subject><subject>Irradiance variability</subject><subject>Learning theory</subject><subject>m-Means clustering</subject><subject>Neural networks</subject><subject>Regime-dependent prediction</subject><subject>Solar irradiance</subject><subject>Solar power generation</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EEkvhH3CIOHFJ6omd2L4gVRUFpEq99G55ncnWS9Zexl4Q_x6n4YzQHObyvZk38xh7D7wDDuP1sSOMtbqew9BB33HBX7AdaGVaPur-JdtxM_IWpIbX7E3OR15BreSO-ZuG8BBO2E54xjhhLI2jEubgg1uaiBd6buVXou9NQf8Uw48LNnOiJj8lKi25eMAmp8VRE4jcFFz0zwB6l0uIh7fs1eyWjO_-9iv2ePf58fZre__w5dvtzX3rpR5LK42THMW8H7T2op-NnNSwdxNOPd9rMCMqJQUobQYEJfgAGmc9D4oLaQYlrtiHbWyqW232YXXrU4zoiwUxGA1jhT5u0JlSvSMXewrZ47K4iOmSLSgjeqmgV_-BjnpYfZmKyg31lHImnO2ZwsnRbwvcrhHZo90ismtEFnpbI6qyT5sM61d-BqTVNdbvTYFW01MK_x7wBzCUm9k</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>McCandless, T.C.</creator><creator>Haupt, S.E.</creator><creator>Young, G.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2068-4193</orcidid><orcidid>https://orcid.org/0000000220684193</orcidid></search><sort><creationdate>20160401</creationdate><title>A regime-dependent artificial neural network technique for short-range solar irradiance forecasting</title><author>McCandless, T.C. ; Haupt, S.E. ; Young, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-49a40e3fb588c32f94d75baded20b8196e774317895e1730518ef8f570349573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Balancing</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Irradiance</topic><topic>Irradiance variability</topic><topic>Learning theory</topic><topic>m-Means clustering</topic><topic>Neural networks</topic><topic>Regime-dependent prediction</topic><topic>Solar irradiance</topic><topic>Solar power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCandless, T.C.</creatorcontrib><creatorcontrib>Haupt, S.E.</creatorcontrib><creatorcontrib>Young, G.S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCandless, T.C.</au><au>Haupt, S.E.</au><au>Young, G.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A regime-dependent artificial neural network technique for short-range solar irradiance forecasting</atitle><jtitle>Renewable energy</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>89</volume><issue>C</issue><spage>351</spage><epage>359</epage><pages>351-359</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Solar power can provide substantial power supply to the grid; however, it is also a highly variable energy source due to changes in weather conditions, i.e. clouds, that can cause rapid changes in solar power output. Independent systems operators (ISOs) and regional transmission organizations (RTOs) monitor the demand load and direct power generation from utilities, define operating limits and create contingency plans to balance the load with the available power generation resources. ISOs, RTOs, and utilities will require solar irradiance forecasts to effectively and efficiently balance the energy grid as the penetration of solar power increases. This study presents a cloud regime-dependent short-range solar irradiance forecasting system to provide 15-min average clearness index forecasts for 15-min, 60-min, 120-min and 180-min lead-times. A k-means algorithm identifies the cloud regime based on surface weather observations and irradiance observations. Then, Artificial Neural Networks (ANNs) are trained to predict the clearness index. This regime-dependent system makes a more accurate deterministic forecast than a global ANN or clearness index persistence and produces more accurate predictions of expected irradiance variability than assuming climatological average variability.
•We forecast solar irradiance for short-range predictions of 15 min–180 min.•We develop a regime-dependent artificial neural network forecasting system.•K-Means on surface weather and irradiance observations identifies cloud regimes.•Lower forecast error than either a smart persistence or global ANN.•Regime-dependent ANN can be used to predict irradiance variability.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2015.12.030</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2068-4193</orcidid><orcidid>https://orcid.org/0000000220684193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2016-04, Vol.89 (C), p.351-359 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_osti_scitechconnect_1359816 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial neural network Artificial neural networks Balancing Climatology Clouds Irradiance Irradiance variability Learning theory m-Means clustering Neural networks Regime-dependent prediction Solar irradiance Solar power generation |
title | A regime-dependent artificial neural network technique for short-range solar irradiance forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20regime-dependent%20artificial%20neural%20network%20technique%20for%20short-range%20solar%20irradiance%20forecasting&rft.jtitle=Renewable%20energy&rft.au=McCandless,%20T.C.&rft.date=2016-04-01&rft.volume=89&rft.issue=C&rft.spage=351&rft.epage=359&rft.pages=351-359&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2015.12.030&rft_dat=%3Cproquest_osti_%3E1768581969%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768581969&rft_id=info:pmid/&rft_els_id=S0960148115305346&rfr_iscdi=true |