Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments
In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic meas...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2016-03, Vol.813 (C), p.84-95 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | C |
container_start_page | 84 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 813 |
creator | Coakley, K.J. Dewey, M.S. Huber, M.G. Huffer, C.R. Huffman, P.R. Marley, D.E. Mumm, H.P. O׳Shaughnessy, C.M. Schelhammer, K.W. Thompson, A.K. Yue, A.T. |
description | In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function. |
doi_str_mv | 10.1016/j.nima.2015.12.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1359631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900216000048</els_id><sourcerecordid>1816029894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-8f4e519024cb5d2f2018c768c1410be561d397c4d7155ecf2bb7d2f0c1c0855c3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVJodtt_0BPoqdc7Gq0li1DLyUkaSHQQ9uz0I5HRItXciXtkv33ldmeo8uI4XvDe4-xTyBaENB_ObTBH20rBagWZCv67g3bgB5kM6qhv2GbCulmFEK-Y-9zPoj6xkFv2PTrlM7-bGdug50v2WdulyVFi8-8RG4R4ykU7mLiIYaGXpYYKBRfBROhvfBkC3FyjrBk7gOfvaPij3X3slCqn1DyB_bW2TnTx_9zy_483P---948_Xz8cfftqcFOydJo15GCUcgO92qSrqbROPQaoQOxJ9XDtBsH7KYBlCJ0cr8fKiYQUGilcLdln693Yy7eZPSF8BljCNWcgZ0a-x1U6PYK1ZR_T5SLOfqMNM82UDxlAxp6IUc9dhWVVxRTzDmRM0tNZNPFgDBr7-Zg1t7N2rsBaWrvVfT1KqKa9OwprUYoIE0-rT6m6F-T_wMQLozq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816029894</pqid></control><display><type>article</type><title>Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments</title><source>Elsevier ScienceDirect Journals</source><creator>Coakley, K.J. ; Dewey, M.S. ; Huber, M.G. ; Huffer, C.R. ; Huffman, P.R. ; Marley, D.E. ; Mumm, H.P. ; O׳Shaughnessy, C.M. ; Schelhammer, K.W. ; Thompson, A.K. ; Yue, A.T.</creator><creatorcontrib>Coakley, K.J. ; Dewey, M.S. ; Huber, M.G. ; Huffer, C.R. ; Huffman, P.R. ; Marley, D.E. ; Mumm, H.P. ; O׳Shaughnessy, C.M. ; Schelhammer, K.W. ; Thompson, A.K. ; Yue, A.T.</creatorcontrib><description>In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2015.12.064</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Competing risks ; Decay ; Decay rate ; Error analysis ; Formalism ; Magnetic trapping ; Marginally trapped neutrons ; Neutron lifetime ; Survival ; Survival analysis ; Symplectic integration ; Trapped particles ; Uncertainty ; Walls</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2016-03, Vol.813 (C), p.84-95</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-8f4e519024cb5d2f2018c768c1410be561d397c4d7155ecf2bb7d2f0c1c0855c3</citedby><cites>FETCH-LOGICAL-c452t-8f4e519024cb5d2f2018c768c1410be561d397c4d7155ecf2bb7d2f0c1c0855c3</cites><orcidid>0000-0003-3787-2577 ; 0000-0002-2562-1378 ; 0000000225621378 ; 0000000337872577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900216000048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1359631$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coakley, K.J.</creatorcontrib><creatorcontrib>Dewey, M.S.</creatorcontrib><creatorcontrib>Huber, M.G.</creatorcontrib><creatorcontrib>Huffer, C.R.</creatorcontrib><creatorcontrib>Huffman, P.R.</creatorcontrib><creatorcontrib>Marley, D.E.</creatorcontrib><creatorcontrib>Mumm, H.P.</creatorcontrib><creatorcontrib>O׳Shaughnessy, C.M.</creatorcontrib><creatorcontrib>Schelhammer, K.W.</creatorcontrib><creatorcontrib>Thompson, A.K.</creatorcontrib><creatorcontrib>Yue, A.T.</creatorcontrib><title>Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.</description><subject>Competing risks</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Error analysis</subject><subject>Formalism</subject><subject>Magnetic trapping</subject><subject>Marginally trapped neutrons</subject><subject>Neutron lifetime</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Symplectic integration</subject><subject>Trapped particles</subject><subject>Uncertainty</subject><subject>Walls</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVJodtt_0BPoqdc7Gq0li1DLyUkaSHQQ9uz0I5HRItXciXtkv33ldmeo8uI4XvDe4-xTyBaENB_ObTBH20rBagWZCv67g3bgB5kM6qhv2GbCulmFEK-Y-9zPoj6xkFv2PTrlM7-bGdug50v2WdulyVFi8-8RG4R4ykU7mLiIYaGXpYYKBRfBROhvfBkC3FyjrBk7gOfvaPij3X3slCqn1DyB_bW2TnTx_9zy_483P---948_Xz8cfftqcFOydJo15GCUcgO92qSrqbROPQaoQOxJ9XDtBsH7KYBlCJ0cr8fKiYQUGilcLdln693Yy7eZPSF8BljCNWcgZ0a-x1U6PYK1ZR_T5SLOfqMNM82UDxlAxp6IUc9dhWVVxRTzDmRM0tNZNPFgDBr7-Zg1t7N2rsBaWrvVfT1KqKa9OwprUYoIE0-rT6m6F-T_wMQLozq</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Coakley, K.J.</creator><creator>Dewey, M.S.</creator><creator>Huber, M.G.</creator><creator>Huffer, C.R.</creator><creator>Huffman, P.R.</creator><creator>Marley, D.E.</creator><creator>Mumm, H.P.</creator><creator>O׳Shaughnessy, C.M.</creator><creator>Schelhammer, K.W.</creator><creator>Thompson, A.K.</creator><creator>Yue, A.T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid><orcidid>https://orcid.org/0000-0002-2562-1378</orcidid><orcidid>https://orcid.org/0000000225621378</orcidid><orcidid>https://orcid.org/0000000337872577</orcidid></search><sort><creationdate>20160321</creationdate><title>Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments</title><author>Coakley, K.J. ; Dewey, M.S. ; Huber, M.G. ; Huffer, C.R. ; Huffman, P.R. ; Marley, D.E. ; Mumm, H.P. ; O׳Shaughnessy, C.M. ; Schelhammer, K.W. ; Thompson, A.K. ; Yue, A.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-8f4e519024cb5d2f2018c768c1410be561d397c4d7155ecf2bb7d2f0c1c0855c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Competing risks</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Error analysis</topic><topic>Formalism</topic><topic>Magnetic trapping</topic><topic>Marginally trapped neutrons</topic><topic>Neutron lifetime</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Symplectic integration</topic><topic>Trapped particles</topic><topic>Uncertainty</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coakley, K.J.</creatorcontrib><creatorcontrib>Dewey, M.S.</creatorcontrib><creatorcontrib>Huber, M.G.</creatorcontrib><creatorcontrib>Huffer, C.R.</creatorcontrib><creatorcontrib>Huffman, P.R.</creatorcontrib><creatorcontrib>Marley, D.E.</creatorcontrib><creatorcontrib>Mumm, H.P.</creatorcontrib><creatorcontrib>O׳Shaughnessy, C.M.</creatorcontrib><creatorcontrib>Schelhammer, K.W.</creatorcontrib><creatorcontrib>Thompson, A.K.</creatorcontrib><creatorcontrib>Yue, A.T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coakley, K.J.</au><au>Dewey, M.S.</au><au>Huber, M.G.</au><au>Huffer, C.R.</au><au>Huffman, P.R.</au><au>Marley, D.E.</au><au>Mumm, H.P.</au><au>O׳Shaughnessy, C.M.</au><au>Schelhammer, K.W.</au><au>Thompson, A.K.</au><au>Yue, A.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>813</volume><issue>C</issue><spage>84</spage><epage>95</epage><pages>84-95</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2015.12.064</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid><orcidid>https://orcid.org/0000-0002-2562-1378</orcidid><orcidid>https://orcid.org/0000000225621378</orcidid><orcidid>https://orcid.org/0000000337872577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2016-03, Vol.813 (C), p.84-95 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_osti_scitechconnect_1359631 |
source | Elsevier ScienceDirect Journals |
subjects | Competing risks Decay Decay rate Error analysis Formalism Magnetic trapping Marginally trapped neutrons Neutron lifetime Survival Survival analysis Symplectic integration Trapped particles Uncertainty Walls |
title | Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survival%20analysis%20approach%20to%20account%20for%20non-exponential%20decay%20rate%20effects%20in%20lifetime%20experiments&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Coakley,%20K.J.&rft.date=2016-03-21&rft.volume=813&rft.issue=C&rft.spage=84&rft.epage=95&rft.pages=84-95&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2015.12.064&rft_dat=%3Cproquest_osti_%3E1816029894%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816029894&rft_id=info:pmid/&rft_els_id=S0168900216000048&rfr_iscdi=true |