Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

Polysilicon production costs contribute approximately to 25–33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2015-12, Vol.431 (C), p.1-9
Hauptverfasser: Ramos, A., Filtvedt, W.O., Lindholm, D., Ramachandran, P.A., Rodríguez, A., del Cañizo, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue C
container_start_page 1
container_title Journal of crystal growth
container_volume 431
creator Ramos, A.
Filtvedt, W.O.
Lindholm, D.
Ramachandran, P.A.
Rodríguez, A.
del Cañizo, C.
description Polysilicon production costs contribute approximately to 25–33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality. •Temperature control in the CVD processes for SoGSi production is essential.•The heat loss problem associated with polysilicon CVD is addressed.•CFD models for a Siemens and FBR prototypes are developed.•The CFD models developed give us reasonable estimates of the temperature distribution.•CFD models become a tool for design and will help in optimal temperature profiling of these systems.
doi_str_mv 10.1016/j.jcrysgro.2015.08.023
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1359314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024815005400</els_id><sourcerecordid>1816052473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-98109a9155cfffc0a86270aa708c9ded3f8d2cca3d0ed8159351c4d76c6d561e3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEEkvhLyCLE5eEsR0nDieq0lKkShwoZ8uMJ61XSbzY3kqL-PF1tFtx7GFs2fO-J49fVb3n0HDg3adts8V4SHcxNAK4akA3IOSLasN1L2sFIF5Wm7KKGkSrX1dvUtoCFJLDpvr3lXYh-ezDwiJZzCEmNobIUphsZHfROmLJTx7D8pmdMwzzzkab_QOxfE9xthOzi50OyScWRmbZT08zLenJrXRduR2nvXf-Lzn2u9Sp97Z6Ndop0bvTflb9urq8vbiub358-35xflOj6lSuB81hsANXCsdxRLC6Ez1Y24PGwZGTo3YC0UoH5DRXg1QcW9d32DnVcZJn1Yejb0jZm4Q-E96XgRbCbLgsAG-LiB9FmPZoIiFFtNkE6_8f1hLQCyM72fKhMB-PzC6GP3tK2cw-IU2TXSjsk-Gad6BE28si7U72MaQUaTS76GcbD4aDWXM0W_OUo1lzNKBNybGAX44glR968BTXAWhBcj6u73fBP2fxCFyrq54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816052473</pqid></control><display><type>article</type><title>Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor</title><source>Elsevier ScienceDirect Journals</source><source>Recercat</source><creator>Ramos, A. ; Filtvedt, W.O. ; Lindholm, D. ; Ramachandran, P.A. ; Rodríguez, A. ; del Cañizo, C.</creator><creatorcontrib>Ramos, A. ; Filtvedt, W.O. ; Lindholm, D. ; Ramachandran, P.A. ; Rodríguez, A. ; del Cañizo, C.</creatorcontrib><description>Polysilicon production costs contribute approximately to 25–33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality. •Temperature control in the CVD processes for SoGSi production is essential.•The heat loss problem associated with polysilicon CVD is addressed.•CFD models for a Siemens and FBR prototypes are developed.•The CFD models developed give us reasonable estimates of the temperature distribution.•CFD models become a tool for design and will help in optimal temperature profiling of these systems.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2015.08.023</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>A1. CFD modelling ; A3. CVD reactors ; A3. CVD reactors B2. Polysilicon B2. Solar grade silicon A3. Siemens process Fluidized bed reactor A1. CFD modelling ; A3. Siemens process ; B2. Polysilicon ; B2. Solar grade silicon ; Deposition ; Energia solar ; Energia solar fotovoltaica ; Energia solar tèrmica ; Energies ; Fluidized bed reactor ; Industrial engineering ; Manufacturing engineering ; Mathematical models ; Production costs ; Reactors ; Sensitivity analysis ; Solar energy ; Thermal analysis ; Àrees temàtiques de la UPC</subject><ispartof>Journal of crystal growth, 2015-12, Vol.431 (C), p.1-9</ispartof><rights>2015 Elsevier B.V.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-98109a9155cfffc0a86270aa708c9ded3f8d2cca3d0ed8159351c4d76c6d561e3</citedby><cites>FETCH-LOGICAL-c565t-98109a9155cfffc0a86270aa708c9ded3f8d2cca3d0ed8159351c4d76c6d561e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024815005400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,26953,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1359314$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos, A.</creatorcontrib><creatorcontrib>Filtvedt, W.O.</creatorcontrib><creatorcontrib>Lindholm, D.</creatorcontrib><creatorcontrib>Ramachandran, P.A.</creatorcontrib><creatorcontrib>Rodríguez, A.</creatorcontrib><creatorcontrib>del Cañizo, C.</creatorcontrib><title>Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor</title><title>Journal of crystal growth</title><description>Polysilicon production costs contribute approximately to 25–33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality. •Temperature control in the CVD processes for SoGSi production is essential.•The heat loss problem associated with polysilicon CVD is addressed.•CFD models for a Siemens and FBR prototypes are developed.•The CFD models developed give us reasonable estimates of the temperature distribution.•CFD models become a tool for design and will help in optimal temperature profiling of these systems.</description><subject>A1. CFD modelling</subject><subject>A3. CVD reactors</subject><subject>A3. CVD reactors B2. Polysilicon B2. Solar grade silicon A3. Siemens process Fluidized bed reactor A1. CFD modelling</subject><subject>A3. Siemens process</subject><subject>B2. Polysilicon</subject><subject>B2. Solar grade silicon</subject><subject>Deposition</subject><subject>Energia solar</subject><subject>Energia solar fotovoltaica</subject><subject>Energia solar tèrmica</subject><subject>Energies</subject><subject>Fluidized bed reactor</subject><subject>Industrial engineering</subject><subject>Manufacturing engineering</subject><subject>Mathematical models</subject><subject>Production costs</subject><subject>Reactors</subject><subject>Sensitivity analysis</subject><subject>Solar energy</subject><subject>Thermal analysis</subject><subject>Àrees temàtiques de la UPC</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkUFv1DAQhSMEEkvhLyCLE5eEsR0nDieq0lKkShwoZ8uMJ61XSbzY3kqL-PF1tFtx7GFs2fO-J49fVb3n0HDg3adts8V4SHcxNAK4akA3IOSLasN1L2sFIF5Wm7KKGkSrX1dvUtoCFJLDpvr3lXYh-ezDwiJZzCEmNobIUphsZHfROmLJTx7D8pmdMwzzzkab_QOxfE9xthOzi50OyScWRmbZT08zLenJrXRduR2nvXf-Lzn2u9Sp97Z6Ndop0bvTflb9urq8vbiub358-35xflOj6lSuB81hsANXCsdxRLC6Ez1Y24PGwZGTo3YC0UoH5DRXg1QcW9d32DnVcZJn1Yejb0jZm4Q-E96XgRbCbLgsAG-LiB9FmPZoIiFFtNkE6_8f1hLQCyM72fKhMB-PzC6GP3tK2cw-IU2TXSjsk-Gad6BE28si7U72MaQUaTS76GcbD4aDWXM0W_OUo1lzNKBNybGAX44glR968BTXAWhBcj6u73fBP2fxCFyrq54</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Ramos, A.</creator><creator>Filtvedt, W.O.</creator><creator>Lindholm, D.</creator><creator>Ramachandran, P.A.</creator><creator>Rodríguez, A.</creator><creator>del Cañizo, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>XX2</scope><scope>OTOTI</scope></search><sort><creationdate>20151201</creationdate><title>Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor</title><author>Ramos, A. ; Filtvedt, W.O. ; Lindholm, D. ; Ramachandran, P.A. ; Rodríguez, A. ; del Cañizo, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-98109a9155cfffc0a86270aa708c9ded3f8d2cca3d0ed8159351c4d76c6d561e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A1. CFD modelling</topic><topic>A3. CVD reactors</topic><topic>A3. CVD reactors B2. Polysilicon B2. Solar grade silicon A3. Siemens process Fluidized bed reactor A1. CFD modelling</topic><topic>A3. Siemens process</topic><topic>B2. Polysilicon</topic><topic>B2. Solar grade silicon</topic><topic>Deposition</topic><topic>Energia solar</topic><topic>Energia solar fotovoltaica</topic><topic>Energia solar tèrmica</topic><topic>Energies</topic><topic>Fluidized bed reactor</topic><topic>Industrial engineering</topic><topic>Manufacturing engineering</topic><topic>Mathematical models</topic><topic>Production costs</topic><topic>Reactors</topic><topic>Sensitivity analysis</topic><topic>Solar energy</topic><topic>Thermal analysis</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, A.</creatorcontrib><creatorcontrib>Filtvedt, W.O.</creatorcontrib><creatorcontrib>Lindholm, D.</creatorcontrib><creatorcontrib>Ramachandran, P.A.</creatorcontrib><creatorcontrib>Rodríguez, A.</creatorcontrib><creatorcontrib>del Cañizo, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, A.</au><au>Filtvedt, W.O.</au><au>Lindholm, D.</au><au>Ramachandran, P.A.</au><au>Rodríguez, A.</au><au>del Cañizo, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor</atitle><jtitle>Journal of crystal growth</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>431</volume><issue>C</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>Polysilicon production costs contribute approximately to 25–33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality. •Temperature control in the CVD processes for SoGSi production is essential.•The heat loss problem associated with polysilicon CVD is addressed.•CFD models for a Siemens and FBR prototypes are developed.•The CFD models developed give us reasonable estimates of the temperature distribution.•CFD models become a tool for design and will help in optimal temperature profiling of these systems.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2015.08.023</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2015-12, Vol.431 (C), p.1-9
issn 0022-0248
1873-5002
language eng
recordid cdi_osti_scitechconnect_1359314
source Elsevier ScienceDirect Journals; Recercat
subjects A1. CFD modelling
A3. CVD reactors
A3. CVD reactors B2. Polysilicon B2. Solar grade silicon A3. Siemens process Fluidized bed reactor A1. CFD modelling
A3. Siemens process
B2. Polysilicon
B2. Solar grade silicon
Deposition
Energia solar
Energia solar fotovoltaica
Energia solar tèrmica
Energies
Fluidized bed reactor
Industrial engineering
Manufacturing engineering
Mathematical models
Production costs
Reactors
Sensitivity analysis
Solar energy
Thermal analysis
Àrees temàtiques de la UPC
title Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deposition%20reactors%20for%20solar%20grade%20silicon:%20A%20comparative%20thermal%20analysis%20of%20a%20Siemens%20reactor%20and%20a%20fluidized%20bed%20reactor&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Ramos,%20A.&rft.date=2015-12-01&rft.volume=431&rft.issue=C&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2015.08.023&rft_dat=%3Cproquest_osti_%3E1816052473%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816052473&rft_id=info:pmid/&rft_els_id=S0022024815005400&rfr_iscdi=true