Active phase correction of high resolution silicon photonic arrayed waveguide gratings

Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in sili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2017-03, Vol.25 (6), p.6320-6334
Hauptverfasser: Gehl, M, Trotter, D, Starbuck, A, Pomerene, A, Lentine, A L, DeRose, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6334
container_issue 6
container_start_page 6320
container_title Optics express
container_volume 25
creator Gehl, M
Trotter, D
Starbuck, A
Pomerene, A
Lentine, A L
DeRose, C
description Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm . Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.
doi_str_mv 10.1364/OE.25.006320
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1356215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884882685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-12d7ca9a45df26a0f3692c8332faf8bb6d537109771f7a039e2a3382044acba53</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EoqWwMaOIiYEUfyV2xqoqH1KlLsBqOY6dGKVxsJOi_ntSUhDTvTo9Or13AFwjOEckpQ-b1RwncwhTguEJmCKY0ZhCzk7_3RNwEcIHhIiyjJ2DCeaEw4wnU_C-UJ3d6aitZNCRct7rwXBN5ExU2bKKvA6u7n-sYGurBm0r17nGqkh6L_e6iL7kTpe9LXRUetnZpgyX4MzIOuiro87A2-PqdfkcrzdPL8vFOlYky7oY4YIpmUmaFAanEhqSZlhxQrCRhud5WiSEDS0YQ4ZJSDKNJSEcQ0qlymVCZuB2zHWhsyIo22lVDT82QwuBSJJidIDuRqj17rPXoRNbG5Sua9lo1weBOKec45Qf0PsRVd6F4LURrbdb6fcCQXGYW2xWAidinHvAb47Jfb7VxR_8uy_5Bmlreo8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884882685</pqid></control><display><type>article</type><title>Active phase correction of high resolution silicon photonic arrayed waveguide gratings</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gehl, M ; Trotter, D ; Starbuck, A ; Pomerene, A ; Lentine, A L ; DeRose, C</creator><creatorcontrib>Gehl, M ; Trotter, D ; Starbuck, A ; Pomerene, A ; Lentine, A L ; DeRose, C ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm . Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.25.006320</identifier><identifier>PMID: 28380985</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>ENGINEERING ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING</subject><ispartof>Optics express, 2017-03, Vol.25 (6), p.6320-6334</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-12d7ca9a45df26a0f3692c8332faf8bb6d537109771f7a039e2a3382044acba53</citedby><cites>FETCH-LOGICAL-c399t-12d7ca9a45df26a0f3692c8332faf8bb6d537109771f7a039e2a3382044acba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28380985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1356215$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gehl, M</creatorcontrib><creatorcontrib>Trotter, D</creatorcontrib><creatorcontrib>Starbuck, A</creatorcontrib><creatorcontrib>Pomerene, A</creatorcontrib><creatorcontrib>Lentine, A L</creatorcontrib><creatorcontrib>DeRose, C</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Active phase correction of high resolution silicon photonic arrayed waveguide gratings</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm . Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.</description><subject>ENGINEERING</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAYhC0EoqWwMaOIiYEUfyV2xqoqH1KlLsBqOY6dGKVxsJOi_ntSUhDTvTo9Or13AFwjOEckpQ-b1RwncwhTguEJmCKY0ZhCzk7_3RNwEcIHhIiyjJ2DCeaEw4wnU_C-UJ3d6aitZNCRct7rwXBN5ExU2bKKvA6u7n-sYGurBm0r17nGqkh6L_e6iL7kTpe9LXRUetnZpgyX4MzIOuiro87A2-PqdfkcrzdPL8vFOlYky7oY4YIpmUmaFAanEhqSZlhxQrCRhud5WiSEDS0YQ4ZJSDKNJSEcQ0qlymVCZuB2zHWhsyIo22lVDT82QwuBSJJidIDuRqj17rPXoRNbG5Sua9lo1weBOKec45Qf0PsRVd6F4LURrbdb6fcCQXGYW2xWAidinHvAb47Jfb7VxR_8uy_5Bmlreo8</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>Gehl, M</creator><creator>Trotter, D</creator><creator>Starbuck, A</creator><creator>Pomerene, A</creator><creator>Lentine, A L</creator><creator>DeRose, C</creator><general>Optical Society of America (OSA)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170320</creationdate><title>Active phase correction of high resolution silicon photonic arrayed waveguide gratings</title><author>Gehl, M ; Trotter, D ; Starbuck, A ; Pomerene, A ; Lentine, A L ; DeRose, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-12d7ca9a45df26a0f3692c8332faf8bb6d537109771f7a039e2a3382044acba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ENGINEERING</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gehl, M</creatorcontrib><creatorcontrib>Trotter, D</creatorcontrib><creatorcontrib>Starbuck, A</creatorcontrib><creatorcontrib>Pomerene, A</creatorcontrib><creatorcontrib>Lentine, A L</creatorcontrib><creatorcontrib>DeRose, C</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gehl, M</au><au>Trotter, D</au><au>Starbuck, A</au><au>Pomerene, A</au><au>Lentine, A L</au><au>DeRose, C</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active phase correction of high resolution silicon photonic arrayed waveguide gratings</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2017-03-20</date><risdate>2017</risdate><volume>25</volume><issue>6</issue><spage>6320</spage><epage>6334</epage><pages>6320-6334</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm . Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>28380985</pmid><doi>10.1364/OE.25.006320</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2017-03, Vol.25 (6), p.6320-6334
issn 1094-4087
1094-4087
language eng
recordid cdi_osti_scitechconnect_1356215
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ENGINEERING
MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
title Active phase correction of high resolution silicon photonic arrayed waveguide gratings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20phase%20correction%20of%20high%20resolution%20silicon%20photonic%20arrayed%20waveguide%20gratings&rft.jtitle=Optics%20express&rft.au=Gehl,%20M&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2017-03-20&rft.volume=25&rft.issue=6&rft.spage=6320&rft.epage=6334&rft.pages=6320-6334&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.25.006320&rft_dat=%3Cproquest_osti_%3E1884882685%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884882685&rft_id=info:pmid/28380985&rfr_iscdi=true