Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS
Sedimentary molybdenum (Mo) accumulation is a robust proxy for sulfidic conditions in both modern and ancient aquatic systems and has been used to infer changing marine redox chemistry throughout Earth’s history. Accurate interpretation of any proxy requires a comprehensive understanding of its biog...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 2017-06, Vol.206 (C), p.18-29 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | C |
container_start_page | 18 |
container_title | Geochimica et cosmochimica acta |
container_volume | 206 |
creator | Wagner, Meghan Chappaz, Anthony Lyons, Timothy W. |
description | Sedimentary molybdenum (Mo) accumulation is a robust proxy for sulfidic conditions in both modern and ancient aquatic systems and has been used to infer changing marine redox chemistry throughout Earth’s history. Accurate interpretation of any proxy requires a comprehensive understanding of its biogeochemical cycling, but knowledge gaps remain concerning the geochemical mechanism(s) leading to Mo burial in anoxic sediments. Better characterization of Mo speciation should provide mechanistic insight into sedimentary Mo accumulation, and therefore in this study we investigate Mo speciation from both modern (Castle Lake, USA) and ancient (Doushantuo Formation, China) environments using X-ray Absorption Near Edge Structure (XANES) spectroscopy. By utilizing a series of laboratory-synthesized oxythiomolybdate complexes—many containing organic ligands—we expand the number of available standards to encompass a greater range of known Mo chemistry and test the linkage between Mo and total organic carbon (TOC). In weakly euxinic systems ([H2S(aq)] |
doi_str_mv | 10.1016/j.gca.2017.02.018 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1355033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703717301126</els_id><sourcerecordid>S0016703717301126</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-db20cd09f6dc36444b1bdbdb9a01f4a7da006133287bf9cf9a41d43bdf191a953</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF1wP-PNZB4dXZVitVBxoYILIWTyaFNnMiVJW-bfm1LXchdnc87hng-hWwIpAVLeb9KV4GkGpEohS4FMztCITKosqQtKz9EIoimpgFaX6Mr7DQBURQEj9P3at0Mjld112G-VMDyY3mJuJW52zvAWb3lYH_iAjcUHxX_aAftdq400Aiu7N663nbLBP-CF9Wa1Dh5r13f4azp_v0YXmrde3fzpGH3Onz5mL8ny7Xkxmy4TnhdlSGSTgZBQ61IKWuZ53pBGxqs5EJ3zSnKAklCaTapG10LXPCcyp43UpCY8Dhyju1Nv74NhXpigxFr01ioRGKFxKKXRRE4m4XrvndJs60zH3cAIsCNDtmGRITsyZJCxyDBmHk8ZFb_fG-WO5coKJY07dsve_JP-BR7heu8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wagner, Meghan ; Chappaz, Anthony ; Lyons, Timothy W.</creator><creatorcontrib>Wagner, Meghan ; Chappaz, Anthony ; Lyons, Timothy W. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Sedimentary molybdenum (Mo) accumulation is a robust proxy for sulfidic conditions in both modern and ancient aquatic systems and has been used to infer changing marine redox chemistry throughout Earth’s history. Accurate interpretation of any proxy requires a comprehensive understanding of its biogeochemical cycling, but knowledge gaps remain concerning the geochemical mechanism(s) leading to Mo burial in anoxic sediments. Better characterization of Mo speciation should provide mechanistic insight into sedimentary Mo accumulation, and therefore in this study we investigate Mo speciation from both modern (Castle Lake, USA) and ancient (Doushantuo Formation, China) environments using X-ray Absorption Near Edge Structure (XANES) spectroscopy. By utilizing a series of laboratory-synthesized oxythiomolybdate complexes—many containing organic ligands—we expand the number of available standards to encompass a greater range of known Mo chemistry and test the linkage between Mo and total organic carbon (TOC). In weakly euxinic systems ([H2S(aq)]<11µM), or where sulfide is restricted to pore waters, natural samples are best represented by a linear combination of MoO3, MoOxS4−x2− (intermediate thiomolybdates), and [MoOx(cat)4−x]2− (cat=catechol, x=2 or 3). These results suggest a revised model for how Mo accumulates in weakly sulfidic sediments, including a previously unrecognized role for organic matter in early sequestration of Mo and a de-emphasized importance for MoS42− (tetrathiomolybdate).</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2017.02.018</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Euxinia ; GEOSCIENCES ; Molybdenum ; Speciation ; XAFS</subject><ispartof>Geochimica et cosmochimica acta, 2017-06, Vol.206 (C), p.18-29</ispartof><rights>2017 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-db20cd09f6dc36444b1bdbdb9a01f4a7da006133287bf9cf9a41d43bdf191a953</citedby><cites>FETCH-LOGICAL-a456t-db20cd09f6dc36444b1bdbdb9a01f4a7da006133287bf9cf9a41d43bdf191a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016703717301126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1355033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Meghan</creatorcontrib><creatorcontrib>Chappaz, Anthony</creatorcontrib><creatorcontrib>Lyons, Timothy W.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS</title><title>Geochimica et cosmochimica acta</title><description>Sedimentary molybdenum (Mo) accumulation is a robust proxy for sulfidic conditions in both modern and ancient aquatic systems and has been used to infer changing marine redox chemistry throughout Earth’s history. Accurate interpretation of any proxy requires a comprehensive understanding of its biogeochemical cycling, but knowledge gaps remain concerning the geochemical mechanism(s) leading to Mo burial in anoxic sediments. Better characterization of Mo speciation should provide mechanistic insight into sedimentary Mo accumulation, and therefore in this study we investigate Mo speciation from both modern (Castle Lake, USA) and ancient (Doushantuo Formation, China) environments using X-ray Absorption Near Edge Structure (XANES) spectroscopy. By utilizing a series of laboratory-synthesized oxythiomolybdate complexes—many containing organic ligands—we expand the number of available standards to encompass a greater range of known Mo chemistry and test the linkage between Mo and total organic carbon (TOC). In weakly euxinic systems ([H2S(aq)]<11µM), or where sulfide is restricted to pore waters, natural samples are best represented by a linear combination of MoO3, MoOxS4−x2− (intermediate thiomolybdates), and [MoOx(cat)4−x]2− (cat=catechol, x=2 or 3). These results suggest a revised model for how Mo accumulates in weakly sulfidic sediments, including a previously unrecognized role for organic matter in early sequestration of Mo and a de-emphasized importance for MoS42− (tetrathiomolybdate).</description><subject>Euxinia</subject><subject>GEOSCIENCES</subject><subject>Molybdenum</subject><subject>Speciation</subject><subject>XAFS</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF1wP-PNZB4dXZVitVBxoYILIWTyaFNnMiVJW-bfm1LXchdnc87hng-hWwIpAVLeb9KV4GkGpEohS4FMztCITKosqQtKz9EIoimpgFaX6Mr7DQBURQEj9P3at0Mjld112G-VMDyY3mJuJW52zvAWb3lYH_iAjcUHxX_aAftdq400Aiu7N663nbLBP-CF9Wa1Dh5r13f4azp_v0YXmrde3fzpGH3Onz5mL8ny7Xkxmy4TnhdlSGSTgZBQ61IKWuZ53pBGxqs5EJ3zSnKAklCaTapG10LXPCcyp43UpCY8Dhyju1Nv74NhXpigxFr01ioRGKFxKKXRRE4m4XrvndJs60zH3cAIsCNDtmGRITsyZJCxyDBmHk8ZFb_fG-WO5coKJY07dsve_JP-BR7heu8</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Wagner, Meghan</creator><creator>Chappaz, Anthony</creator><creator>Lyons, Timothy W.</creator><general>Elsevier Ltd</general><general>The Geochemical Society; The Meteoritical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170601</creationdate><title>Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS</title><author>Wagner, Meghan ; Chappaz, Anthony ; Lyons, Timothy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-db20cd09f6dc36444b1bdbdb9a01f4a7da006133287bf9cf9a41d43bdf191a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Euxinia</topic><topic>GEOSCIENCES</topic><topic>Molybdenum</topic><topic>Speciation</topic><topic>XAFS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Meghan</creatorcontrib><creatorcontrib>Chappaz, Anthony</creatorcontrib><creatorcontrib>Lyons, Timothy W.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Meghan</au><au>Chappaz, Anthony</au><au>Lyons, Timothy W.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>206</volume><issue>C</issue><spage>18</spage><epage>29</epage><pages>18-29</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Sedimentary molybdenum (Mo) accumulation is a robust proxy for sulfidic conditions in both modern and ancient aquatic systems and has been used to infer changing marine redox chemistry throughout Earth’s history. Accurate interpretation of any proxy requires a comprehensive understanding of its biogeochemical cycling, but knowledge gaps remain concerning the geochemical mechanism(s) leading to Mo burial in anoxic sediments. Better characterization of Mo speciation should provide mechanistic insight into sedimentary Mo accumulation, and therefore in this study we investigate Mo speciation from both modern (Castle Lake, USA) and ancient (Doushantuo Formation, China) environments using X-ray Absorption Near Edge Structure (XANES) spectroscopy. By utilizing a series of laboratory-synthesized oxythiomolybdate complexes—many containing organic ligands—we expand the number of available standards to encompass a greater range of known Mo chemistry and test the linkage between Mo and total organic carbon (TOC). In weakly euxinic systems ([H2S(aq)]<11µM), or where sulfide is restricted to pore waters, natural samples are best represented by a linear combination of MoO3, MoOxS4−x2− (intermediate thiomolybdates), and [MoOx(cat)4−x]2− (cat=catechol, x=2 or 3). These results suggest a revised model for how Mo accumulates in weakly sulfidic sediments, including a previously unrecognized role for organic matter in early sequestration of Mo and a de-emphasized importance for MoS42− (tetrathiomolybdate).</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2017.02.018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7037 |
ispartof | Geochimica et cosmochimica acta, 2017-06, Vol.206 (C), p.18-29 |
issn | 0016-7037 1872-9533 |
language | eng |
recordid | cdi_osti_scitechconnect_1355033 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Euxinia GEOSCIENCES Molybdenum Speciation XAFS |
title | Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdenum%20speciation%20and%20burial%20pathway%20in%20weakly%20sulfidic%20environments:%20Insights%20from%20XAFS&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Wagner,%20Meghan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-06-01&rft.volume=206&rft.issue=C&rft.spage=18&rft.epage=29&rft.pages=18-29&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2017.02.018&rft_dat=%3Celsevier_osti_%3ES0016703717301126%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0016703717301126&rfr_iscdi=true |