Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-02, Vol.106 (8)
Hauptverfasser: Becker, Chaoyue, Posen, Sam, Groll, Nickolas, Cook, Russell, Schlepütz, Christian M., Hall, Daniel Leslie, Liepe, Matthias, Pellin, Michael, Zasadzinski, John, Proslier, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Applied physics letters
container_volume 106
creator Becker, Chaoyue
Posen, Sam
Groll, Nickolas
Cook, Russell
Schlepütz, Christian M.
Hall, Daniel Leslie
Liepe, Matthias
Pellin, Michael
Zasadzinski, John
Proslier, Thomas
description We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.
doi_str_mv 10.1063/1.4913617
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1354828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4913617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</originalsourceid><addsrcrecordid>eNotkE9LxDAUxIMouK4e_AbBm4eueXlN2hyXxX-w6EEFbyV9TTRS25p0hX57K7unYYYfwzCMXYJYgdB4A6vcAGoojtgCRFFkCFAes4UQAjNtFJyys5S-Zqsk4oK9rzvbTikk3nv-VONLx9MuekuOt3ZyMXHfxzkaXKS-a3Y0hu6DR9uEnvvofnauo4mT_Q3jxO0wtIHsGPounbMTb9vkLg66ZG93t6-bh2z7fP-4WW8zQinHzGhtSSpEa3SDtQYha0RSXhaGDChSTV47dI3J0eaQA_lGYQlGQiFLrXHJrva9fRpDlSiMjj7nqZ2jsQJUeSnLGbreQxT7lKLz1RDDt41TBaL6_62C6vAb_gH1v188</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Becker, Chaoyue ; Posen, Sam ; Groll, Nickolas ; Cook, Russell ; Schlepütz, Christian M. ; Hall, Daniel Leslie ; Liepe, Matthias ; Pellin, Michael ; Zasadzinski, John ; Proslier, Thomas</creator><creatorcontrib>Becker, Chaoyue ; Posen, Sam ; Groll, Nickolas ; Cook, Russell ; Schlepütz, Christian M. ; Hall, Daniel Leslie ; Liepe, Matthias ; Pellin, Michael ; Zasadzinski, John ; Proslier, Thomas ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4913617</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>Applied physics letters, 2015-02, Vol.106 (8)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</citedby><cites>FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</cites><orcidid>0000-0002-6499-306X ; 0000-0002-0485-2708 ; 0000-0001-5941-2809 ; 000000026499306X ; 0000000159412809 ; 0000000204852708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1354828$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Chaoyue</creatorcontrib><creatorcontrib>Posen, Sam</creatorcontrib><creatorcontrib>Groll, Nickolas</creatorcontrib><creatorcontrib>Cook, Russell</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Hall, Daniel Leslie</creatorcontrib><creatorcontrib>Liepe, Matthias</creatorcontrib><creatorcontrib>Pellin, Michael</creatorcontrib><creatorcontrib>Zasadzinski, John</creatorcontrib><creatorcontrib>Proslier, Thomas</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</title><title>Applied physics letters</title><description>We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAUxIMouK4e_AbBm4eueXlN2hyXxX-w6EEFbyV9TTRS25p0hX57K7unYYYfwzCMXYJYgdB4A6vcAGoojtgCRFFkCFAes4UQAjNtFJyys5S-Zqsk4oK9rzvbTikk3nv-VONLx9MuekuOt3ZyMXHfxzkaXKS-a3Y0hu6DR9uEnvvofnauo4mT_Q3jxO0wtIHsGPounbMTb9vkLg66ZG93t6-bh2z7fP-4WW8zQinHzGhtSSpEa3SDtQYha0RSXhaGDChSTV47dI3J0eaQA_lGYQlGQiFLrXHJrva9fRpDlSiMjj7nqZ2jsQJUeSnLGbreQxT7lKLz1RDDt41TBaL6_62C6vAb_gH1v188</recordid><startdate>20150223</startdate><enddate>20150223</enddate><creator>Becker, Chaoyue</creator><creator>Posen, Sam</creator><creator>Groll, Nickolas</creator><creator>Cook, Russell</creator><creator>Schlepütz, Christian M.</creator><creator>Hall, Daniel Leslie</creator><creator>Liepe, Matthias</creator><creator>Pellin, Michael</creator><creator>Zasadzinski, John</creator><creator>Proslier, Thomas</creator><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6499-306X</orcidid><orcidid>https://orcid.org/0000-0002-0485-2708</orcidid><orcidid>https://orcid.org/0000-0001-5941-2809</orcidid><orcidid>https://orcid.org/000000026499306X</orcidid><orcidid>https://orcid.org/0000000159412809</orcidid><orcidid>https://orcid.org/0000000204852708</orcidid></search><sort><creationdate>20150223</creationdate><title>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</title><author>Becker, Chaoyue ; Posen, Sam ; Groll, Nickolas ; Cook, Russell ; Schlepütz, Christian M. ; Hall, Daniel Leslie ; Liepe, Matthias ; Pellin, Michael ; Zasadzinski, John ; Proslier, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Chaoyue</creatorcontrib><creatorcontrib>Posen, Sam</creatorcontrib><creatorcontrib>Groll, Nickolas</creatorcontrib><creatorcontrib>Cook, Russell</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Hall, Daniel Leslie</creatorcontrib><creatorcontrib>Liepe, Matthias</creatorcontrib><creatorcontrib>Pellin, Michael</creatorcontrib><creatorcontrib>Zasadzinski, John</creatorcontrib><creatorcontrib>Proslier, Thomas</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Chaoyue</au><au>Posen, Sam</au><au>Groll, Nickolas</au><au>Cook, Russell</au><au>Schlepütz, Christian M.</au><au>Hall, Daniel Leslie</au><au>Liepe, Matthias</au><au>Pellin, Michael</au><au>Zasadzinski, John</au><au>Proslier, Thomas</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</atitle><jtitle>Applied physics letters</jtitle><date>2015-02-23</date><risdate>2015</risdate><volume>106</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.4913617</doi><orcidid>https://orcid.org/0000-0002-6499-306X</orcidid><orcidid>https://orcid.org/0000-0002-0485-2708</orcidid><orcidid>https://orcid.org/0000-0001-5941-2809</orcidid><orcidid>https://orcid.org/000000026499306X</orcidid><orcidid>https://orcid.org/0000000159412809</orcidid><orcidid>https://orcid.org/0000000204852708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-02, Vol.106 (8)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_1354828
source AIP Journals Complete; Alma/SFX Local Collection
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
title Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Nb3Sn%20surface%20layers%20for%20superconducting%20radio%20frequency%20cavity%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Becker,%20Chaoyue&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-02-23&rft.volume=106&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4913617&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4913617%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true