Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications
We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at t...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-02, Vol.106 (8) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 106 |
creator | Becker, Chaoyue Posen, Sam Groll, Nickolas Cook, Russell Schlepütz, Christian M. Hall, Daniel Leslie Liepe, Matthias Pellin, Michael Zasadzinski, John Proslier, Thomas |
description | We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators. |
doi_str_mv | 10.1063/1.4913617 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1354828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4913617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</originalsourceid><addsrcrecordid>eNotkE9LxDAUxIMouK4e_AbBm4eueXlN2hyXxX-w6EEFbyV9TTRS25p0hX57K7unYYYfwzCMXYJYgdB4A6vcAGoojtgCRFFkCFAes4UQAjNtFJyys5S-Zqsk4oK9rzvbTikk3nv-VONLx9MuekuOt3ZyMXHfxzkaXKS-a3Y0hu6DR9uEnvvofnauo4mT_Q3jxO0wtIHsGPounbMTb9vkLg66ZG93t6-bh2z7fP-4WW8zQinHzGhtSSpEa3SDtQYha0RSXhaGDChSTV47dI3J0eaQA_lGYQlGQiFLrXHJrva9fRpDlSiMjj7nqZ2jsQJUeSnLGbreQxT7lKLz1RDDt41TBaL6_62C6vAb_gH1v188</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Becker, Chaoyue ; Posen, Sam ; Groll, Nickolas ; Cook, Russell ; Schlepütz, Christian M. ; Hall, Daniel Leslie ; Liepe, Matthias ; Pellin, Michael ; Zasadzinski, John ; Proslier, Thomas</creator><creatorcontrib>Becker, Chaoyue ; Posen, Sam ; Groll, Nickolas ; Cook, Russell ; Schlepütz, Christian M. ; Hall, Daniel Leslie ; Liepe, Matthias ; Pellin, Michael ; Zasadzinski, John ; Proslier, Thomas ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4913617</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>Applied physics letters, 2015-02, Vol.106 (8)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</citedby><cites>FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</cites><orcidid>0000-0002-6499-306X ; 0000-0002-0485-2708 ; 0000-0001-5941-2809 ; 000000026499306X ; 0000000159412809 ; 0000000204852708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1354828$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Chaoyue</creatorcontrib><creatorcontrib>Posen, Sam</creatorcontrib><creatorcontrib>Groll, Nickolas</creatorcontrib><creatorcontrib>Cook, Russell</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Hall, Daniel Leslie</creatorcontrib><creatorcontrib>Liepe, Matthias</creatorcontrib><creatorcontrib>Pellin, Michael</creatorcontrib><creatorcontrib>Zasadzinski, John</creatorcontrib><creatorcontrib>Proslier, Thomas</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</title><title>Applied physics letters</title><description>We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAUxIMouK4e_AbBm4eueXlN2hyXxX-w6EEFbyV9TTRS25p0hX57K7unYYYfwzCMXYJYgdB4A6vcAGoojtgCRFFkCFAes4UQAjNtFJyys5S-Zqsk4oK9rzvbTikk3nv-VONLx9MuekuOt3ZyMXHfxzkaXKS-a3Y0hu6DR9uEnvvofnauo4mT_Q3jxO0wtIHsGPounbMTb9vkLg66ZG93t6-bh2z7fP-4WW8zQinHzGhtSSpEa3SDtQYha0RSXhaGDChSTV47dI3J0eaQA_lGYQlGQiFLrXHJrva9fRpDlSiMjj7nqZ2jsQJUeSnLGbreQxT7lKLz1RDDt41TBaL6_62C6vAb_gH1v188</recordid><startdate>20150223</startdate><enddate>20150223</enddate><creator>Becker, Chaoyue</creator><creator>Posen, Sam</creator><creator>Groll, Nickolas</creator><creator>Cook, Russell</creator><creator>Schlepütz, Christian M.</creator><creator>Hall, Daniel Leslie</creator><creator>Liepe, Matthias</creator><creator>Pellin, Michael</creator><creator>Zasadzinski, John</creator><creator>Proslier, Thomas</creator><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6499-306X</orcidid><orcidid>https://orcid.org/0000-0002-0485-2708</orcidid><orcidid>https://orcid.org/0000-0001-5941-2809</orcidid><orcidid>https://orcid.org/000000026499306X</orcidid><orcidid>https://orcid.org/0000000159412809</orcidid><orcidid>https://orcid.org/0000000204852708</orcidid></search><sort><creationdate>20150223</creationdate><title>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</title><author>Becker, Chaoyue ; Posen, Sam ; Groll, Nickolas ; Cook, Russell ; Schlepütz, Christian M. ; Hall, Daniel Leslie ; Liepe, Matthias ; Pellin, Michael ; Zasadzinski, John ; Proslier, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-966ac2533a96d3b6102b33c5f279c915c5d4be3ed943a4141cfd5381921728663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Chaoyue</creatorcontrib><creatorcontrib>Posen, Sam</creatorcontrib><creatorcontrib>Groll, Nickolas</creatorcontrib><creatorcontrib>Cook, Russell</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Hall, Daniel Leslie</creatorcontrib><creatorcontrib>Liepe, Matthias</creatorcontrib><creatorcontrib>Pellin, Michael</creatorcontrib><creatorcontrib>Zasadzinski, John</creatorcontrib><creatorcontrib>Proslier, Thomas</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Chaoyue</au><au>Posen, Sam</au><au>Groll, Nickolas</au><au>Cook, Russell</au><au>Schlepütz, Christian M.</au><au>Hall, Daniel Leslie</au><au>Liepe, Matthias</au><au>Pellin, Michael</au><au>Zasadzinski, John</au><au>Proslier, Thomas</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications</atitle><jtitle>Applied physics letters</jtitle><date>2015-02-23</date><risdate>2015</risdate><volume>106</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.4913617</doi><orcidid>https://orcid.org/0000-0002-6499-306X</orcidid><orcidid>https://orcid.org/0000-0002-0485-2708</orcidid><orcidid>https://orcid.org/0000-0001-5941-2809</orcidid><orcidid>https://orcid.org/000000026499306X</orcidid><orcidid>https://orcid.org/0000000159412809</orcidid><orcidid>https://orcid.org/0000000204852708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-02, Vol.106 (8) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_1354828 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY |
title | Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Nb3Sn%20surface%20layers%20for%20superconducting%20radio%20frequency%20cavity%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Becker,%20Chaoyue&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-02-23&rft.volume=106&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4913617&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4913617%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |