Anti-knock quality of sugar derived levulinic esters and cyclic ethers

•Anti-knock quality of four sugar-based cyclic ethers and levulinic esters determined.•Experiments carried out on both gasoline engine and constant volume chamber.•Results demonstrate good performance for levulinates and unsaturated cyclic ether.•Anti-knock behavior qualitatively explained with chem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2017-08, Vol.202 (C), p.414-425
Hauptverfasser: Tian, Miao, McCormick, Robert L., Luecke, Jon, de Jong, Ed, van der Waal, Jan C., van Klink, Gerard P.M., Boot, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue C
container_start_page 414
container_title Fuel (Guildford)
container_volume 202
creator Tian, Miao
McCormick, Robert L.
Luecke, Jon
de Jong, Ed
van der Waal, Jan C.
van Klink, Gerard P.M.
Boot, Michael D.
description •Anti-knock quality of four sugar-based cyclic ethers and levulinic esters determined.•Experiments carried out on both gasoline engine and constant volume chamber.•Results demonstrate good performance for levulinates and unsaturated cyclic ether.•Anti-knock behavior qualitatively explained with chemical kinetics considerations. The objective of this paper is to investigate the anti-knock quality of sugar-derived levulinic esters (methyl levulinate (ML) and ethyl levulinate (EL)) and cyclic ethers (furfuryl ethyl ether (FEE) and ethyl tetrahydrofurfuryl ether (ETE)). To this end, combustion experiments were carried out in both an engine and a constant volume autoignition device (modified ignition quality tester (IQT)). The results from both apparatuses demonstrate that ML, EL and FEE have superior anti-knock quality to the reference Euro95 gasoline. ETE, conversely, performed markedly worse than the reference fuel on both setups and might therefore be a more appropriate fuel additive for compression ignition engines. The main reason of the distinctions in anti-knock quality can be found in the molecular structure of the neat biofuels. ML and EL are levulinic esters, with a ketone (CO) functionality and an ester (C(O)–O) group on the carbon chain. They can readily produce stable intermediates during the auto-ignition process, thereby slowing down the overall reaction rate. The unsaturated cyclic ether (FEE) has very strong ring C–H bonds. However, the saturated cyclic ether (ETE) has weak ring C–H bonds, which facilitate more readily ring opening reactions. Ethyl side chains on the cyclic ethers further accelerate the reaction rate. Importantly for future research, our results suggest that the modified (IQT) and engine experiments are interchangeable setups with respect to qualitative anti-knock quality evaluation of novel compounds.
doi_str_mv 10.1016/j.fuel.2017.04.027
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1352700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236117304076</els_id><sourcerecordid>2006793380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-3356e642271114a799569119e4391d0ce672c2762c43b5463f770fe9b8d03bb83</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKei59ZJ0iYteFkWV4UFL3oObTp1063tbpIu7NubUs-eBobvH775CbmnkFCg4qlNmhG7hAGVCaQJMHlBFjSXPJY045dkAYGKGRf0mtw41wKAzLN0QTar3pt43w96Hx3HsjP-HA1N5Mbv0kY1WnPCOurwNHamNzpC59G6qOzrSJ91N238LmxuyVVTdg7v_uaSfG1ePtdv8fbj9X292sY65cLHnGcCRcqYpJSmpSyKTBSUFpjygtagUUimmRQs4FWWCt5ICQ0WVV4Dr6qcL8nDfHdw3iinjUe900Pfo_aK8oxJgAA9ztDBDscxKKt2GG0fvBQDELLgPJ8oNlPaDs5ZbNTBmp_SnhUFNZWqWjWVqqZSFaQqlBpCz3MIw5Mng3ZywF5jbeykUA_mv_gvuLp9vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006793380</pqid></control><display><type>article</type><title>Anti-knock quality of sugar derived levulinic esters and cyclic ethers</title><source>Elsevier ScienceDirect Journals</source><creator>Tian, Miao ; McCormick, Robert L. ; Luecke, Jon ; de Jong, Ed ; van der Waal, Jan C. ; van Klink, Gerard P.M. ; Boot, Michael D.</creator><creatorcontrib>Tian, Miao ; McCormick, Robert L. ; Luecke, Jon ; de Jong, Ed ; van der Waal, Jan C. ; van Klink, Gerard P.M. ; Boot, Michael D. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>•Anti-knock quality of four sugar-based cyclic ethers and levulinic esters determined.•Experiments carried out on both gasoline engine and constant volume chamber.•Results demonstrate good performance for levulinates and unsaturated cyclic ether.•Anti-knock behavior qualitatively explained with chemical kinetics considerations. The objective of this paper is to investigate the anti-knock quality of sugar-derived levulinic esters (methyl levulinate (ML) and ethyl levulinate (EL)) and cyclic ethers (furfuryl ethyl ether (FEE) and ethyl tetrahydrofurfuryl ether (ETE)). To this end, combustion experiments were carried out in both an engine and a constant volume autoignition device (modified ignition quality tester (IQT)). The results from both apparatuses demonstrate that ML, EL and FEE have superior anti-knock quality to the reference Euro95 gasoline. ETE, conversely, performed markedly worse than the reference fuel on both setups and might therefore be a more appropriate fuel additive for compression ignition engines. The main reason of the distinctions in anti-knock quality can be found in the molecular structure of the neat biofuels. ML and EL are levulinic esters, with a ketone (CO) functionality and an ester (C(O)–O) group on the carbon chain. They can readily produce stable intermediates during the auto-ignition process, thereby slowing down the overall reaction rate. The unsaturated cyclic ether (FEE) has very strong ring C–H bonds. However, the saturated cyclic ether (ETE) has weak ring C–H bonds, which facilitate more readily ring opening reactions. Ethyl side chains on the cyclic ethers further accelerate the reaction rate. Importantly for future research, our results suggest that the modified (IQT) and engine experiments are interchangeable setups with respect to qualitative anti-knock quality evaluation of novel compounds.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2017.04.027</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Additives ; ADVANCED PROPULSION SYSTEMS ; Biofuels ; Bonding strength ; Chains ; Chemical bonds ; Compression ; Engine knock ; Engines ; Esters ; Ethers ; Fuels ; Furan ; Gasoline ; Ignition ; Intermediates ; Levulinate ; Molecular structure ; Octane booster ; Quality assessment ; Ring opening ; Spontaneous combustion ; Sugar</subject><ispartof>Fuel (Guildford), 2017-08, Vol.202 (C), p.414-425</ispartof><rights>2017 The Author(s)</rights><rights>Copyright Elsevier BV Aug 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-3356e642271114a799569119e4391d0ce672c2762c43b5463f770fe9b8d03bb83</citedby><cites>FETCH-LOGICAL-c436t-3356e642271114a799569119e4391d0ce672c2762c43b5463f770fe9b8d03bb83</cites><orcidid>0000-0001-5300-4230 ; 0000-0002-9830-6109 ; 0000000298306109 ; 0000000153004230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2017.04.027$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1352700$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Miao</creatorcontrib><creatorcontrib>McCormick, Robert L.</creatorcontrib><creatorcontrib>Luecke, Jon</creatorcontrib><creatorcontrib>de Jong, Ed</creatorcontrib><creatorcontrib>van der Waal, Jan C.</creatorcontrib><creatorcontrib>van Klink, Gerard P.M.</creatorcontrib><creatorcontrib>Boot, Michael D.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Anti-knock quality of sugar derived levulinic esters and cyclic ethers</title><title>Fuel (Guildford)</title><description>•Anti-knock quality of four sugar-based cyclic ethers and levulinic esters determined.•Experiments carried out on both gasoline engine and constant volume chamber.•Results demonstrate good performance for levulinates and unsaturated cyclic ether.•Anti-knock behavior qualitatively explained with chemical kinetics considerations. The objective of this paper is to investigate the anti-knock quality of sugar-derived levulinic esters (methyl levulinate (ML) and ethyl levulinate (EL)) and cyclic ethers (furfuryl ethyl ether (FEE) and ethyl tetrahydrofurfuryl ether (ETE)). To this end, combustion experiments were carried out in both an engine and a constant volume autoignition device (modified ignition quality tester (IQT)). The results from both apparatuses demonstrate that ML, EL and FEE have superior anti-knock quality to the reference Euro95 gasoline. ETE, conversely, performed markedly worse than the reference fuel on both setups and might therefore be a more appropriate fuel additive for compression ignition engines. The main reason of the distinctions in anti-knock quality can be found in the molecular structure of the neat biofuels. ML and EL are levulinic esters, with a ketone (CO) functionality and an ester (C(O)–O) group on the carbon chain. They can readily produce stable intermediates during the auto-ignition process, thereby slowing down the overall reaction rate. The unsaturated cyclic ether (FEE) has very strong ring C–H bonds. However, the saturated cyclic ether (ETE) has weak ring C–H bonds, which facilitate more readily ring opening reactions. Ethyl side chains on the cyclic ethers further accelerate the reaction rate. Importantly for future research, our results suggest that the modified (IQT) and engine experiments are interchangeable setups with respect to qualitative anti-knock quality evaluation of novel compounds.</description><subject>Additives</subject><subject>ADVANCED PROPULSION SYSTEMS</subject><subject>Biofuels</subject><subject>Bonding strength</subject><subject>Chains</subject><subject>Chemical bonds</subject><subject>Compression</subject><subject>Engine knock</subject><subject>Engines</subject><subject>Esters</subject><subject>Ethers</subject><subject>Fuels</subject><subject>Furan</subject><subject>Gasoline</subject><subject>Ignition</subject><subject>Intermediates</subject><subject>Levulinate</subject><subject>Molecular structure</subject><subject>Octane booster</subject><subject>Quality assessment</subject><subject>Ring opening</subject><subject>Spontaneous combustion</subject><subject>Sugar</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKei59ZJ0iYteFkWV4UFL3oObTp1063tbpIu7NubUs-eBobvH775CbmnkFCg4qlNmhG7hAGVCaQJMHlBFjSXPJY045dkAYGKGRf0mtw41wKAzLN0QTar3pt43w96Hx3HsjP-HA1N5Mbv0kY1WnPCOurwNHamNzpC59G6qOzrSJ91N238LmxuyVVTdg7v_uaSfG1ePtdv8fbj9X292sY65cLHnGcCRcqYpJSmpSyKTBSUFpjygtagUUimmRQs4FWWCt5ICQ0WVV4Dr6qcL8nDfHdw3iinjUe900Pfo_aK8oxJgAA9ztDBDscxKKt2GG0fvBQDELLgPJ8oNlPaDs5ZbNTBmp_SnhUFNZWqWjWVqqZSFaQqlBpCz3MIw5Mng3ZywF5jbeykUA_mv_gvuLp9vA</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Tian, Miao</creator><creator>McCormick, Robert L.</creator><creator>Luecke, Jon</creator><creator>de Jong, Ed</creator><creator>van der Waal, Jan C.</creator><creator>van Klink, Gerard P.M.</creator><creator>Boot, Michael D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5300-4230</orcidid><orcidid>https://orcid.org/0000-0002-9830-6109</orcidid><orcidid>https://orcid.org/0000000298306109</orcidid><orcidid>https://orcid.org/0000000153004230</orcidid></search><sort><creationdate>20170815</creationdate><title>Anti-knock quality of sugar derived levulinic esters and cyclic ethers</title><author>Tian, Miao ; McCormick, Robert L. ; Luecke, Jon ; de Jong, Ed ; van der Waal, Jan C. ; van Klink, Gerard P.M. ; Boot, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-3356e642271114a799569119e4391d0ce672c2762c43b5463f770fe9b8d03bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additives</topic><topic>ADVANCED PROPULSION SYSTEMS</topic><topic>Biofuels</topic><topic>Bonding strength</topic><topic>Chains</topic><topic>Chemical bonds</topic><topic>Compression</topic><topic>Engine knock</topic><topic>Engines</topic><topic>Esters</topic><topic>Ethers</topic><topic>Fuels</topic><topic>Furan</topic><topic>Gasoline</topic><topic>Ignition</topic><topic>Intermediates</topic><topic>Levulinate</topic><topic>Molecular structure</topic><topic>Octane booster</topic><topic>Quality assessment</topic><topic>Ring opening</topic><topic>Spontaneous combustion</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Miao</creatorcontrib><creatorcontrib>McCormick, Robert L.</creatorcontrib><creatorcontrib>Luecke, Jon</creatorcontrib><creatorcontrib>de Jong, Ed</creatorcontrib><creatorcontrib>van der Waal, Jan C.</creatorcontrib><creatorcontrib>van Klink, Gerard P.M.</creatorcontrib><creatorcontrib>Boot, Michael D.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Miao</au><au>McCormick, Robert L.</au><au>Luecke, Jon</au><au>de Jong, Ed</au><au>van der Waal, Jan C.</au><au>van Klink, Gerard P.M.</au><au>Boot, Michael D.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-knock quality of sugar derived levulinic esters and cyclic ethers</atitle><jtitle>Fuel (Guildford)</jtitle><date>2017-08-15</date><risdate>2017</risdate><volume>202</volume><issue>C</issue><spage>414</spage><epage>425</epage><pages>414-425</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Anti-knock quality of four sugar-based cyclic ethers and levulinic esters determined.•Experiments carried out on both gasoline engine and constant volume chamber.•Results demonstrate good performance for levulinates and unsaturated cyclic ether.•Anti-knock behavior qualitatively explained with chemical kinetics considerations. The objective of this paper is to investigate the anti-knock quality of sugar-derived levulinic esters (methyl levulinate (ML) and ethyl levulinate (EL)) and cyclic ethers (furfuryl ethyl ether (FEE) and ethyl tetrahydrofurfuryl ether (ETE)). To this end, combustion experiments were carried out in both an engine and a constant volume autoignition device (modified ignition quality tester (IQT)). The results from both apparatuses demonstrate that ML, EL and FEE have superior anti-knock quality to the reference Euro95 gasoline. ETE, conversely, performed markedly worse than the reference fuel on both setups and might therefore be a more appropriate fuel additive for compression ignition engines. The main reason of the distinctions in anti-knock quality can be found in the molecular structure of the neat biofuels. ML and EL are levulinic esters, with a ketone (CO) functionality and an ester (C(O)–O) group on the carbon chain. They can readily produce stable intermediates during the auto-ignition process, thereby slowing down the overall reaction rate. The unsaturated cyclic ether (FEE) has very strong ring C–H bonds. However, the saturated cyclic ether (ETE) has weak ring C–H bonds, which facilitate more readily ring opening reactions. Ethyl side chains on the cyclic ethers further accelerate the reaction rate. Importantly for future research, our results suggest that the modified (IQT) and engine experiments are interchangeable setups with respect to qualitative anti-knock quality evaluation of novel compounds.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2017.04.027</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5300-4230</orcidid><orcidid>https://orcid.org/0000-0002-9830-6109</orcidid><orcidid>https://orcid.org/0000000298306109</orcidid><orcidid>https://orcid.org/0000000153004230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2017-08, Vol.202 (C), p.414-425
issn 0016-2361
1873-7153
language eng
recordid cdi_osti_scitechconnect_1352700
source Elsevier ScienceDirect Journals
subjects Additives
ADVANCED PROPULSION SYSTEMS
Biofuels
Bonding strength
Chains
Chemical bonds
Compression
Engine knock
Engines
Esters
Ethers
Fuels
Furan
Gasoline
Ignition
Intermediates
Levulinate
Molecular structure
Octane booster
Quality assessment
Ring opening
Spontaneous combustion
Sugar
title Anti-knock quality of sugar derived levulinic esters and cyclic ethers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-knock%20quality%20of%20sugar%20derived%20levulinic%20esters%20and%20cyclic%20ethers&rft.jtitle=Fuel%20(Guildford)&rft.au=Tian,%20Miao&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017-08-15&rft.volume=202&rft.issue=C&rft.spage=414&rft.epage=425&rft.pages=414-425&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2017.04.027&rft_dat=%3Cproquest_osti_%3E2006793380%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006793380&rft_id=info:pmid/&rft_els_id=S0016236117304076&rfr_iscdi=true