Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells

We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of chemical and biomolecular engineering 2016-06, Vol.7 (1), p.509-532
Hauptverfasser: Li, Dongguo, Lv, Haifeng, Kang, Yijin, Markovic, Nenad M, Stamenkovic, Vojislav R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 1
container_start_page 509
container_title Annual review of chemical and biomolecular engineering
container_volume 7
creator Li, Dongguo
Lv, Haifeng
Kang, Yijin
Markovic, Nenad M
Stamenkovic, Vojislav R
description We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important role in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Understanding how the doped elements interact with each other and or carbon is challenging and necessary in the design of robust fuel cell catalysts.
doi_str_mv 10.1146/annurev-chembioeng-080615-034526
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1352589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795878756</sourcerecordid><originalsourceid>FETCH-LOGICAL-a544t-e73dd580f9516bc22196f4f82c1c6f763f7d3b28f2925cce3c601a84a4a21e9a3</originalsourceid><addsrcrecordid>eNqVkU1v1DAURSMEoqXwF5DFqpuAv-3sQNMWkEYqQmVteZznmaDEHmynZf49HmUoS0Be-C6O7rvSaZpLgt8SwuU7G8Kc4L51O5g2Q4SwbbHGkogWMy6ofNKck46rVnAunz5mps-aFzl_x1gqLfnz5owqXJ-U5439kuI2Qc5oCKjsAF3BPYxxP0EoKHp0-_OwhYC-Qj-7MsRjsktY2WLHQy4Z-ZjQOj60dzDtIdlSJ6KbGUa0gnHML5tn3o4ZXp3-i-bbzfXd6lO7vv34efVh3dq6trSgWN8LjX0niNw4SkknPfeaOuKkV5J51bMN1Z52VDgHzElMrOaWW0qgs-yiebP0xlwGk91QwO1cDAFcMYQJKnRXocsF2qf4Y4ZczDRkV2faAHHOhmgmJJFYqH9ACdGad1L8HVWd0EorISv6fkFdijkn8GafhsmmgyHYHB2bk2Pzx7FZHJvFca14fbo2byboHwt-S63A9QIcq-xYywZ4yP9_6BcT_cCZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795878756</pqid></control><display><type>article</type><title>Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Li, Dongguo ; Lv, Haifeng ; Kang, Yijin ; Markovic, Nenad M ; Stamenkovic, Vojislav R</creator><creatorcontrib>Li, Dongguo ; Lv, Haifeng ; Kang, Yijin ; Markovic, Nenad M ; Stamenkovic, Vojislav R ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important role in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Understanding how the doped elements interact with each other and or carbon is challenging and necessary in the design of robust fuel cell catalysts.</description><identifier>ISSN: 1947-5438</identifier><identifier>EISSN: 1947-5446</identifier><identifier>DOI: 10.1146/annurev-chembioeng-080615-034526</identifier><identifier>PMID: 27070766</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Carbon ; Carbon - chemistry ; Catalysis ; Catalysts ; Core-shell ; Design engineering ; Durability ; Electrochemical Techniques ; Electrochemistry ; Fuel cells ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; Nanoparticle ; Nanoparticles - chemistry ; Oxidation-Reduction ; Oxygen ; Oxygen - chemistry ; Platinum ; Platinum - chemistry ; Precious metals ; Temperature ; Thin films</subject><ispartof>Annual review of chemical and biomolecular engineering, 2016-06, Vol.7 (1), p.509-532</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a544t-e73dd580f9516bc22196f4f82c1c6f763f7d3b28f2925cce3c601a84a4a21e9a3</citedby><cites>FETCH-LOGICAL-a544t-e73dd580f9516bc22196f4f82c1c6f763f7d3b28f2925cce3c601a84a4a21e9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-chembioeng-080615-034526?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-chembioeng-080615-034526$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,314,780,784,885,4182,27924,27925,78254,78255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27070766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1352589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Dongguo</creatorcontrib><creatorcontrib>Lv, Haifeng</creatorcontrib><creatorcontrib>Kang, Yijin</creatorcontrib><creatorcontrib>Markovic, Nenad M</creatorcontrib><creatorcontrib>Stamenkovic, Vojislav R</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells</title><title>Annual review of chemical and biomolecular engineering</title><addtitle>Annu Rev Chem Biomol Eng</addtitle><description>We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important role in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Understanding how the doped elements interact with each other and or carbon is challenging and necessary in the design of robust fuel cell catalysts.</description><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Core-shell</subject><subject>Design engineering</subject><subject>Durability</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Fuel cells</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>Nanoparticle</subject><subject>Nanoparticles - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Platinum</subject><subject>Platinum - chemistry</subject><subject>Precious metals</subject><subject>Temperature</subject><subject>Thin films</subject><issn>1947-5438</issn><issn>1947-5446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkU1v1DAURSMEoqXwF5DFqpuAv-3sQNMWkEYqQmVteZznmaDEHmynZf49HmUoS0Be-C6O7rvSaZpLgt8SwuU7G8Kc4L51O5g2Q4SwbbHGkogWMy6ofNKck46rVnAunz5mps-aFzl_x1gqLfnz5owqXJ-U5439kuI2Qc5oCKjsAF3BPYxxP0EoKHp0-_OwhYC-Qj-7MsRjsktY2WLHQy4Z-ZjQOj60dzDtIdlSJ6KbGUa0gnHML5tn3o4ZXp3-i-bbzfXd6lO7vv34efVh3dq6trSgWN8LjX0niNw4SkknPfeaOuKkV5J51bMN1Z52VDgHzElMrOaWW0qgs-yiebP0xlwGk91QwO1cDAFcMYQJKnRXocsF2qf4Y4ZczDRkV2faAHHOhmgmJJFYqH9ACdGad1L8HVWd0EorISv6fkFdijkn8GafhsmmgyHYHB2bk2Pzx7FZHJvFca14fbo2byboHwt-S63A9QIcq-xYywZ4yP9_6BcT_cCZ</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Li, Dongguo</creator><creator>Lv, Haifeng</creator><creator>Kang, Yijin</creator><creator>Markovic, Nenad M</creator><creator>Stamenkovic, Vojislav R</creator><general>Annual Reviews</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160607</creationdate><title>Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells</title><author>Li, Dongguo ; Lv, Haifeng ; Kang, Yijin ; Markovic, Nenad M ; Stamenkovic, Vojislav R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a544t-e73dd580f9516bc22196f4f82c1c6f763f7d3b28f2925cce3c601a84a4a21e9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Core-shell</topic><topic>Design engineering</topic><topic>Durability</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Fuel cells</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>Nanoparticle</topic><topic>Nanoparticles - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Platinum</topic><topic>Platinum - chemistry</topic><topic>Precious metals</topic><topic>Temperature</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dongguo</creatorcontrib><creatorcontrib>Lv, Haifeng</creatorcontrib><creatorcontrib>Kang, Yijin</creatorcontrib><creatorcontrib>Markovic, Nenad M</creatorcontrib><creatorcontrib>Stamenkovic, Vojislav R</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Annual review of chemical and biomolecular engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dongguo</au><au>Lv, Haifeng</au><au>Kang, Yijin</au><au>Markovic, Nenad M</au><au>Stamenkovic, Vojislav R</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells</atitle><jtitle>Annual review of chemical and biomolecular engineering</jtitle><addtitle>Annu Rev Chem Biomol Eng</addtitle><date>2016-06-07</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>509</spage><epage>532</epage><pages>509-532</pages><issn>1947-5438</issn><eissn>1947-5446</eissn><abstract>We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important role in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Understanding how the doped elements interact with each other and or carbon is challenging and necessary in the design of robust fuel cell catalysts.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>27070766</pmid><doi>10.1146/annurev-chembioeng-080615-034526</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-5438
ispartof Annual review of chemical and biomolecular engineering, 2016-06, Vol.7 (1), p.509-532
issn 1947-5438
1947-5446
language eng
recordid cdi_osti_scitechconnect_1352589
source Annual Reviews Complete A-Z List; MEDLINE
subjects Carbon
Carbon - chemistry
Catalysis
Catalysts
Core-shell
Design engineering
Durability
Electrochemical Techniques
Electrochemistry
Fuel cells
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
Nanoparticle
Nanoparticles - chemistry
Oxidation-Reduction
Oxygen
Oxygen - chemistry
Platinum
Platinum - chemistry
Precious metals
Temperature
Thin films
title Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20in%20the%20Development%20of%20Oxygen%20Reduction%20Reaction%20Catalysts%20for%20Low-Temperature%20Fuel%20Cells&rft.jtitle=Annual%20review%20of%20chemical%20and%20biomolecular%20engineering&rft.au=Li,%20Dongguo&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-06-07&rft.volume=7&rft.issue=1&rft.spage=509&rft.epage=532&rft.pages=509-532&rft.issn=1947-5438&rft.eissn=1947-5446&rft_id=info:doi/10.1146/annurev-chembioeng-080615-034526&rft_dat=%3Cproquest_osti_%3E1795878756%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795878756&rft_id=info:pmid/27070766&rfr_iscdi=true