Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determinat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-10, Vol.145 (15), p.154102-154102
Hauptverfasser: Mendelev, M. I., Underwood, T. L., Ackland, G. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154102
container_issue 15
container_start_page 154102
container_title The Journal of chemical physics
container_volume 145
creator Mendelev, M. I.
Underwood, T. L.
Ackland, G. J.
description New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.
doi_str_mv 10.1063/1.4964654
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1350058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835679406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-45294bbaf10df71134bf2577a65e8286567ffa7c32dcde8f4d0478a1a0836ed93</originalsourceid><addsrcrecordid>eNp90U2PFCEQBmBiNO44evAPGKIXNdsrRdNAH836mWziRc-E4SPDphtaoDfuv5fZGTUx0RMHnnopqhB6CuQCCO_fwAUbOeMDu4c2QOTYCT6S-2hDCIVu5ISfoUelXBNCQFD2EJ1RISRlgm7Qj3fuxk1pmV2sOHmsIw6xuqxrmoPBS6rtIugJ-5Rx3TtcwrxOuoYUD9w670wt53iZdKnBhHp73jIsXva6OFyzjqVVzncFpUXjGqqOYZ0fowdeT8U9OZ1b9O3D-6-Xn7qrLx8_X7696swAUDs20JHtdtoDsV4A9Gzn6SCE5oOTVPKBC--1MD21xjrpmSVMSA2ayJ47O_Zb9PyYm1p_qrQOndmbFGPrW0E_EDLIhl4e0ZLT99WVquZQjJsmHV1aiwLZt4dG1oa9RS_-otdpzbF9QVGgwA8Gmnp1VCanUrLzaslh1vlWAVGHnSlQp501--yUuO5mZ3_LX0tq4PURHLq_m-R_0_6Jb1L-A9Viff8TV3ytrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121640631</pqid></control><display><type>article</type><title>Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mendelev, M. I. ; Underwood, T. L. ; Ackland, G. J.</creator><creatorcontrib>Mendelev, M. I. ; Underwood, T. L. ; Ackland, G. J. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4964654</identifier><identifier>PMID: 27782472</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computer simulation ; Defects ; Embedded atom method ; High temperature ; MATERIALS SCIENCE ; Melt temperature ; Molecular dynamics ; Monte Carlo simulation ; Phase transitions ; Physics ; Plastic properties ; Radiation damage ; Solid phases ; Temperature dependence ; Titanium ; Transformation temperature</subject><ispartof>The Journal of chemical physics, 2016-10, Vol.145 (15), p.154102-154102</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-45294bbaf10df71134bf2577a65e8286567ffa7c32dcde8f4d0478a1a0836ed93</citedby><cites>FETCH-LOGICAL-c511t-45294bbaf10df71134bf2577a65e8286567ffa7c32dcde8f4d0478a1a0836ed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4964654$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27782472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1350058$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendelev, M. I.</creatorcontrib><creatorcontrib>Underwood, T. L.</creatorcontrib><creatorcontrib>Ackland, G. J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.</description><subject>Computer simulation</subject><subject>Defects</subject><subject>Embedded atom method</subject><subject>High temperature</subject><subject>MATERIALS SCIENCE</subject><subject>Melt temperature</subject><subject>Molecular dynamics</subject><subject>Monte Carlo simulation</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Plastic properties</subject><subject>Radiation damage</subject><subject>Solid phases</subject><subject>Temperature dependence</subject><subject>Titanium</subject><subject>Transformation temperature</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90U2PFCEQBmBiNO44evAPGKIXNdsrRdNAH836mWziRc-E4SPDphtaoDfuv5fZGTUx0RMHnnopqhB6CuQCCO_fwAUbOeMDu4c2QOTYCT6S-2hDCIVu5ISfoUelXBNCQFD2EJ1RISRlgm7Qj3fuxk1pmV2sOHmsIw6xuqxrmoPBS6rtIugJ-5Rx3TtcwrxOuoYUD9w670wt53iZdKnBhHp73jIsXva6OFyzjqVVzncFpUXjGqqOYZ0fowdeT8U9OZ1b9O3D-6-Xn7qrLx8_X7696swAUDs20JHtdtoDsV4A9Gzn6SCE5oOTVPKBC--1MD21xjrpmSVMSA2ayJ47O_Zb9PyYm1p_qrQOndmbFGPrW0E_EDLIhl4e0ZLT99WVquZQjJsmHV1aiwLZt4dG1oa9RS_-otdpzbF9QVGgwA8Gmnp1VCanUrLzaslh1vlWAVGHnSlQp501--yUuO5mZ3_LX0tq4PURHLq_m-R_0_6Jb1L-A9Viff8TV3ytrw</recordid><startdate>20161021</startdate><enddate>20161021</enddate><creator>Mendelev, M. I.</creator><creator>Underwood, T. L.</creator><creator>Ackland, G. J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161021</creationdate><title>Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium</title><author>Mendelev, M. I. ; Underwood, T. L. ; Ackland, G. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-45294bbaf10df71134bf2577a65e8286567ffa7c32dcde8f4d0478a1a0836ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Defects</topic><topic>Embedded atom method</topic><topic>High temperature</topic><topic>MATERIALS SCIENCE</topic><topic>Melt temperature</topic><topic>Molecular dynamics</topic><topic>Monte Carlo simulation</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Plastic properties</topic><topic>Radiation damage</topic><topic>Solid phases</topic><topic>Temperature dependence</topic><topic>Titanium</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendelev, M. I.</creatorcontrib><creatorcontrib>Underwood, T. L.</creatorcontrib><creatorcontrib>Ackland, G. J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendelev, M. I.</au><au>Underwood, T. L.</au><au>Ackland, G. J.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-10-21</date><risdate>2016</risdate><volume>145</volume><issue>15</issue><spage>154102</spage><epage>154102</epage><pages>154102-154102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27782472</pmid><doi>10.1063/1.4964654</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-10, Vol.145 (15), p.154102-154102
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1350058
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computer simulation
Defects
Embedded atom method
High temperature
MATERIALS SCIENCE
Melt temperature
Molecular dynamics
Monte Carlo simulation
Phase transitions
Physics
Plastic properties
Radiation damage
Solid phases
Temperature dependence
Titanium
Transformation temperature
title Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20interatomic%20potential%20for%20the%20simulation%20of%20defects,%20plasticity,%20and%20phase%20transformations%20in%20titanium&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mendelev,%20M.%20I.&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2016-10-21&rft.volume=145&rft.issue=15&rft.spage=154102&rft.epage=154102&rft.pages=154102-154102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4964654&rft_dat=%3Cproquest_osti_%3E1835679406%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121640631&rft_id=info:pmid/27782472&rfr_iscdi=true