Change in terrestrial ecosystem water‐use efficiency over the last three decades

Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2015-06, Vol.21 (6), p.2366-2378
Hauptverfasser: Huang, Mengtian, Piao, Shilong, Sun, Yan, Ciais, Philippe, Cheng, Lei, Mao, Jiafu, Poulter, Ben, Shi, Xiaoying, Zeng, Zhenzhong, Wang, Yingping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2378
container_issue 6
container_start_page 2366
container_title Global change biology
container_volume 21
creator Huang, Mengtian
Piao, Shilong
Sun, Yan
Ciais, Philippe
Cheng, Lei
Mao, Jiafu
Poulter, Ben
Shi, Xiaoying
Zeng, Zhenzhong
Wang, Yingping
description Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.
doi_str_mv 10.1111/gcb.12873
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1348304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676339050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</originalsourceid><addsrcrecordid>eNqNkc9uEzEQxlcIREvhwAvAqlzgsK3_2zmWACkoKhKkgpvltWcTl8262LstufEIPCNPgsO2QUJCwhePRr_59M18RfEYoyOc3_HS1keYKEnvFPuYCl4RpsTdbc1ZhRGme8WDlC4QQpQgcb_YI1xggqTaLz5MV6ZbQum7socYIfXRm7YEG9Im9bAur03u__z-Y0hQQtN466GzmzJcQSz7FZStSX0uIkDpwBoH6WFxrzFtgkc3_0Fx_ub1Ynpazd_P3k5P5pUVCtGKOsNw4wxliDlHoZYSjGNIElITh4Tg9cQ0XAruhFEUW2plbbgFmBBmlKMHxeGoG1LvdbK-B7uyoevA9hpTpihiGXoxQivT6svo1yZudDBen57M9baHsEKCEHKFM_t8ZC9j-DrkU-i1Txba1nQQhqRx9s3y5aT6D1QKSieIo4w--wu9CEPs8mW2FFeUEjn549PGkFKEZmcWI70NWeeQ9e-QM_vkRnGo1-B25G2qGTgegWvfwubfSno2fXkrWY0TPof-bTdh4hctJJVcfzqb6cXsDL_7LF7pReafjnxjgjbL6JM-_0gQ5gjhSd5K0l89Esce</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675833279</pqid></control><display><type>article</type><title>Change in terrestrial ecosystem water‐use efficiency over the last three decades</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Mengtian ; Piao, Shilong ; Sun, Yan ; Ciais, Philippe ; Cheng, Lei ; Mao, Jiafu ; Poulter, Ben ; Shi, Xiaoying ; Zeng, Zhenzhong ; Wang, Yingping</creator><creatorcontrib>Huang, Mengtian ; Piao, Shilong ; Sun, Yan ; Ciais, Philippe ; Cheng, Lei ; Mao, Jiafu ; Poulter, Ben ; Shi, Xiaoying ; Zeng, Zhenzhong ; Wang, Yingping ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12873</identifier><identifier>PMID: 25612078</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Bioclimatology ; Carbon Cycle ; carbon dioxide ; Carbon Dioxide - metabolism ; climate ; Climate Change ; CO2 enrichment ; Ecology, environment ; Ecosystem ; Ecosystems ; ENVIRONMENTAL SCIENCES ; evapotranspiration ; evolution ; latitude ; Life Sciences ; Models, Theoretical ; nitrogen ; Nitrogen - metabolism ; nitrogen deposition ; Photosynthesis ; plant communities ; Plant Transpiration ; Plants - metabolism ; primary productivity ; process-based model ; remote-sensing ; stomatal conductance ; Terrestrial ecosystems ; vegetation ; Water - metabolism ; Water resources ; water use efficiency</subject><ispartof>Global change biology, 2015-06, Vol.21 (6), p.2366-2378</ispartof><rights>2015 John Wiley &amp; Sons Ltd</rights><rights>2015 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</citedby><cites>FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</cites><orcidid>0000-0001-8994-5032 ; 0000-0001-8560-4943 ; 0000-0002-4614-6203 ; 0000-0002-2050-7373 ; 0000-0001-6851-2756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12873$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12873$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25612078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01806222$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1348304$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Mengtian</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Poulter, Ben</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Zeng, Zhenzhong</creatorcontrib><creatorcontrib>Wang, Yingping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Change in terrestrial ecosystem water‐use efficiency over the last three decades</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.</description><subject>Bioclimatology</subject><subject>Carbon Cycle</subject><subject>carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>climate</subject><subject>Climate Change</subject><subject>CO2 enrichment</subject><subject>Ecology, environment</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>evapotranspiration</subject><subject>evolution</subject><subject>latitude</subject><subject>Life Sciences</subject><subject>Models, Theoretical</subject><subject>nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>nitrogen deposition</subject><subject>Photosynthesis</subject><subject>plant communities</subject><subject>Plant Transpiration</subject><subject>Plants - metabolism</subject><subject>primary productivity</subject><subject>process-based model</subject><subject>remote-sensing</subject><subject>stomatal conductance</subject><subject>Terrestrial ecosystems</subject><subject>vegetation</subject><subject>Water - metabolism</subject><subject>Water resources</subject><subject>water use efficiency</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9uEzEQxlcIREvhwAvAqlzgsK3_2zmWACkoKhKkgpvltWcTl8262LstufEIPCNPgsO2QUJCwhePRr_59M18RfEYoyOc3_HS1keYKEnvFPuYCl4RpsTdbc1ZhRGme8WDlC4QQpQgcb_YI1xggqTaLz5MV6ZbQum7socYIfXRm7YEG9Im9bAur03u__z-Y0hQQtN466GzmzJcQSz7FZStSX0uIkDpwBoH6WFxrzFtgkc3_0Fx_ub1Ynpazd_P3k5P5pUVCtGKOsNw4wxliDlHoZYSjGNIElITh4Tg9cQ0XAruhFEUW2plbbgFmBBmlKMHxeGoG1LvdbK-B7uyoevA9hpTpihiGXoxQivT6svo1yZudDBen57M9baHsEKCEHKFM_t8ZC9j-DrkU-i1Txba1nQQhqRx9s3y5aT6D1QKSieIo4w--wu9CEPs8mW2FFeUEjn549PGkFKEZmcWI70NWeeQ9e-QM_vkRnGo1-B25G2qGTgegWvfwubfSno2fXkrWY0TPof-bTdh4hctJJVcfzqb6cXsDL_7LF7pReafjnxjgjbL6JM-_0gQ5gjhSd5K0l89Esce</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Huang, Mengtian</creator><creator>Piao, Shilong</creator><creator>Sun, Yan</creator><creator>Ciais, Philippe</creator><creator>Cheng, Lei</creator><creator>Mao, Jiafu</creator><creator>Poulter, Ben</creator><creator>Shi, Xiaoying</creator><creator>Zeng, Zhenzhong</creator><creator>Wang, Yingping</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8994-5032</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0002-4614-6203</orcidid><orcidid>https://orcid.org/0000-0002-2050-7373</orcidid><orcidid>https://orcid.org/0000-0001-6851-2756</orcidid></search><sort><creationdate>201506</creationdate><title>Change in terrestrial ecosystem water‐use efficiency over the last three decades</title><author>Huang, Mengtian ; Piao, Shilong ; Sun, Yan ; Ciais, Philippe ; Cheng, Lei ; Mao, Jiafu ; Poulter, Ben ; Shi, Xiaoying ; Zeng, Zhenzhong ; Wang, Yingping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bioclimatology</topic><topic>Carbon Cycle</topic><topic>carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>climate</topic><topic>Climate Change</topic><topic>CO2 enrichment</topic><topic>Ecology, environment</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>evapotranspiration</topic><topic>evolution</topic><topic>latitude</topic><topic>Life Sciences</topic><topic>Models, Theoretical</topic><topic>nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>nitrogen deposition</topic><topic>Photosynthesis</topic><topic>plant communities</topic><topic>Plant Transpiration</topic><topic>Plants - metabolism</topic><topic>primary productivity</topic><topic>process-based model</topic><topic>remote-sensing</topic><topic>stomatal conductance</topic><topic>Terrestrial ecosystems</topic><topic>vegetation</topic><topic>Water - metabolism</topic><topic>Water resources</topic><topic>water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mengtian</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Poulter, Ben</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Zeng, Zhenzhong</creatorcontrib><creatorcontrib>Wang, Yingping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mengtian</au><au>Piao, Shilong</au><au>Sun, Yan</au><au>Ciais, Philippe</au><au>Cheng, Lei</au><au>Mao, Jiafu</au><au>Poulter, Ben</au><au>Shi, Xiaoying</au><au>Zeng, Zhenzhong</au><au>Wang, Yingping</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change in terrestrial ecosystem water‐use efficiency over the last three decades</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2015-06</date><risdate>2015</risdate><volume>21</volume><issue>6</issue><spage>2366</spage><epage>2378</epage><pages>2366-2378</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>25612078</pmid><doi>10.1111/gcb.12873</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8994-5032</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0002-4614-6203</orcidid><orcidid>https://orcid.org/0000-0002-2050-7373</orcidid><orcidid>https://orcid.org/0000-0001-6851-2756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2015-06, Vol.21 (6), p.2366-2378
issn 1354-1013
1365-2486
language eng
recordid cdi_osti_scitechconnect_1348304
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bioclimatology
Carbon Cycle
carbon dioxide
Carbon Dioxide - metabolism
climate
Climate Change
CO2 enrichment
Ecology, environment
Ecosystem
Ecosystems
ENVIRONMENTAL SCIENCES
evapotranspiration
evolution
latitude
Life Sciences
Models, Theoretical
nitrogen
Nitrogen - metabolism
nitrogen deposition
Photosynthesis
plant communities
Plant Transpiration
Plants - metabolism
primary productivity
process-based model
remote-sensing
stomatal conductance
Terrestrial ecosystems
vegetation
Water - metabolism
Water resources
water use efficiency
title Change in terrestrial ecosystem water‐use efficiency over the last three decades
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20in%20terrestrial%20ecosystem%20water%E2%80%90use%20efficiency%20over%20the%20last%20three%20decades&rft.jtitle=Global%20change%20biology&rft.au=Huang,%20Mengtian&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-06&rft.volume=21&rft.issue=6&rft.spage=2366&rft.epage=2378&rft.pages=2366-2378&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12873&rft_dat=%3Cproquest_osti_%3E1676339050%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675833279&rft_id=info:pmid/25612078&rfr_iscdi=true