Change in terrestrial ecosystem water‐use efficiency over the last three decades
Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants...
Gespeichert in:
Veröffentlicht in: | Global change biology 2015-06, Vol.21 (6), p.2366-2378 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2378 |
---|---|
container_issue | 6 |
container_start_page | 2366 |
container_title | Global change biology |
container_volume | 21 |
creator | Huang, Mengtian Piao, Shilong Sun, Yan Ciais, Philippe Cheng, Lei Mao, Jiafu Poulter, Ben Shi, Xiaoying Zeng, Zhenzhong Wang, Yingping |
description | Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change. |
doi_str_mv | 10.1111/gcb.12873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1348304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676339050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</originalsourceid><addsrcrecordid>eNqNkc9uEzEQxlcIREvhwAvAqlzgsK3_2zmWACkoKhKkgpvltWcTl8262LstufEIPCNPgsO2QUJCwhePRr_59M18RfEYoyOc3_HS1keYKEnvFPuYCl4RpsTdbc1ZhRGme8WDlC4QQpQgcb_YI1xggqTaLz5MV6ZbQum7socYIfXRm7YEG9Im9bAur03u__z-Y0hQQtN466GzmzJcQSz7FZStSX0uIkDpwBoH6WFxrzFtgkc3_0Fx_ub1Ynpazd_P3k5P5pUVCtGKOsNw4wxliDlHoZYSjGNIElITh4Tg9cQ0XAruhFEUW2plbbgFmBBmlKMHxeGoG1LvdbK-B7uyoevA9hpTpihiGXoxQivT6svo1yZudDBen57M9baHsEKCEHKFM_t8ZC9j-DrkU-i1Txba1nQQhqRx9s3y5aT6D1QKSieIo4w--wu9CEPs8mW2FFeUEjn549PGkFKEZmcWI70NWeeQ9e-QM_vkRnGo1-B25G2qGTgegWvfwubfSno2fXkrWY0TPof-bTdh4hctJJVcfzqb6cXsDL_7LF7pReafjnxjgjbL6JM-_0gQ5gjhSd5K0l89Esce</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675833279</pqid></control><display><type>article</type><title>Change in terrestrial ecosystem water‐use efficiency over the last three decades</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Mengtian ; Piao, Shilong ; Sun, Yan ; Ciais, Philippe ; Cheng, Lei ; Mao, Jiafu ; Poulter, Ben ; Shi, Xiaoying ; Zeng, Zhenzhong ; Wang, Yingping</creator><creatorcontrib>Huang, Mengtian ; Piao, Shilong ; Sun, Yan ; Ciais, Philippe ; Cheng, Lei ; Mao, Jiafu ; Poulter, Ben ; Shi, Xiaoying ; Zeng, Zhenzhong ; Wang, Yingping ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12873</identifier><identifier>PMID: 25612078</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Bioclimatology ; Carbon Cycle ; carbon dioxide ; Carbon Dioxide - metabolism ; climate ; Climate Change ; CO2 enrichment ; Ecology, environment ; Ecosystem ; Ecosystems ; ENVIRONMENTAL SCIENCES ; evapotranspiration ; evolution ; latitude ; Life Sciences ; Models, Theoretical ; nitrogen ; Nitrogen - metabolism ; nitrogen deposition ; Photosynthesis ; plant communities ; Plant Transpiration ; Plants - metabolism ; primary productivity ; process-based model ; remote-sensing ; stomatal conductance ; Terrestrial ecosystems ; vegetation ; Water - metabolism ; Water resources ; water use efficiency</subject><ispartof>Global change biology, 2015-06, Vol.21 (6), p.2366-2378</ispartof><rights>2015 John Wiley & Sons Ltd</rights><rights>2015 John Wiley & Sons Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</citedby><cites>FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</cites><orcidid>0000-0001-8994-5032 ; 0000-0001-8560-4943 ; 0000-0002-4614-6203 ; 0000-0002-2050-7373 ; 0000-0001-6851-2756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12873$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12873$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25612078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01806222$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1348304$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Mengtian</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Poulter, Ben</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Zeng, Zhenzhong</creatorcontrib><creatorcontrib>Wang, Yingping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Change in terrestrial ecosystem water‐use efficiency over the last three decades</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.</description><subject>Bioclimatology</subject><subject>Carbon Cycle</subject><subject>carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>climate</subject><subject>Climate Change</subject><subject>CO2 enrichment</subject><subject>Ecology, environment</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>evapotranspiration</subject><subject>evolution</subject><subject>latitude</subject><subject>Life Sciences</subject><subject>Models, Theoretical</subject><subject>nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>nitrogen deposition</subject><subject>Photosynthesis</subject><subject>plant communities</subject><subject>Plant Transpiration</subject><subject>Plants - metabolism</subject><subject>primary productivity</subject><subject>process-based model</subject><subject>remote-sensing</subject><subject>stomatal conductance</subject><subject>Terrestrial ecosystems</subject><subject>vegetation</subject><subject>Water - metabolism</subject><subject>Water resources</subject><subject>water use efficiency</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9uEzEQxlcIREvhwAvAqlzgsK3_2zmWACkoKhKkgpvltWcTl8262LstufEIPCNPgsO2QUJCwhePRr_59M18RfEYoyOc3_HS1keYKEnvFPuYCl4RpsTdbc1ZhRGme8WDlC4QQpQgcb_YI1xggqTaLz5MV6ZbQum7socYIfXRm7YEG9Im9bAur03u__z-Y0hQQtN466GzmzJcQSz7FZStSX0uIkDpwBoH6WFxrzFtgkc3_0Fx_ub1Ynpazd_P3k5P5pUVCtGKOsNw4wxliDlHoZYSjGNIElITh4Tg9cQ0XAruhFEUW2plbbgFmBBmlKMHxeGoG1LvdbK-B7uyoevA9hpTpihiGXoxQivT6svo1yZudDBen57M9baHsEKCEHKFM_t8ZC9j-DrkU-i1Txba1nQQhqRx9s3y5aT6D1QKSieIo4w--wu9CEPs8mW2FFeUEjn549PGkFKEZmcWI70NWeeQ9e-QM_vkRnGo1-B25G2qGTgegWvfwubfSno2fXkrWY0TPof-bTdh4hctJJVcfzqb6cXsDL_7LF7pReafjnxjgjbL6JM-_0gQ5gjhSd5K0l89Esce</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Huang, Mengtian</creator><creator>Piao, Shilong</creator><creator>Sun, Yan</creator><creator>Ciais, Philippe</creator><creator>Cheng, Lei</creator><creator>Mao, Jiafu</creator><creator>Poulter, Ben</creator><creator>Shi, Xiaoying</creator><creator>Zeng, Zhenzhong</creator><creator>Wang, Yingping</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8994-5032</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0002-4614-6203</orcidid><orcidid>https://orcid.org/0000-0002-2050-7373</orcidid><orcidid>https://orcid.org/0000-0001-6851-2756</orcidid></search><sort><creationdate>201506</creationdate><title>Change in terrestrial ecosystem water‐use efficiency over the last three decades</title><author>Huang, Mengtian ; Piao, Shilong ; Sun, Yan ; Ciais, Philippe ; Cheng, Lei ; Mao, Jiafu ; Poulter, Ben ; Shi, Xiaoying ; Zeng, Zhenzhong ; Wang, Yingping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6803-3da41fda3404dd3eb77ead40722b2d0665b9af5765d6a831c3c7ba5cee924a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bioclimatology</topic><topic>Carbon Cycle</topic><topic>carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>climate</topic><topic>Climate Change</topic><topic>CO2 enrichment</topic><topic>Ecology, environment</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>evapotranspiration</topic><topic>evolution</topic><topic>latitude</topic><topic>Life Sciences</topic><topic>Models, Theoretical</topic><topic>nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>nitrogen deposition</topic><topic>Photosynthesis</topic><topic>plant communities</topic><topic>Plant Transpiration</topic><topic>Plants - metabolism</topic><topic>primary productivity</topic><topic>process-based model</topic><topic>remote-sensing</topic><topic>stomatal conductance</topic><topic>Terrestrial ecosystems</topic><topic>vegetation</topic><topic>Water - metabolism</topic><topic>Water resources</topic><topic>water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mengtian</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Poulter, Ben</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Zeng, Zhenzhong</creatorcontrib><creatorcontrib>Wang, Yingping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mengtian</au><au>Piao, Shilong</au><au>Sun, Yan</au><au>Ciais, Philippe</au><au>Cheng, Lei</au><au>Mao, Jiafu</au><au>Poulter, Ben</au><au>Shi, Xiaoying</au><au>Zeng, Zhenzhong</au><au>Wang, Yingping</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change in terrestrial ecosystem water‐use efficiency over the last three decades</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2015-06</date><risdate>2015</risdate><volume>21</volume><issue>6</issue><spage>2366</spage><epage>2378</epage><pages>2366-2378</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m⁻² mm⁻¹ yr⁻¹under the single effect of rising CO₂(‘CO₂’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO₂shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m⁻² mm⁻¹ yr⁻¹), which differs from process‐model (0.0064 g C m⁻² mm⁻¹ yr⁻¹) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO₂reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEₜ(GPP/TR) and inherent water‐use efficiency (IWUEₜ, GPP×VPD/TR) in response to rising CO₂, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>25612078</pmid><doi>10.1111/gcb.12873</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8994-5032</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0002-4614-6203</orcidid><orcidid>https://orcid.org/0000-0002-2050-7373</orcidid><orcidid>https://orcid.org/0000-0001-6851-2756</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2015-06, Vol.21 (6), p.2366-2378 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_osti_scitechconnect_1348304 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bioclimatology Carbon Cycle carbon dioxide Carbon Dioxide - metabolism climate Climate Change CO2 enrichment Ecology, environment Ecosystem Ecosystems ENVIRONMENTAL SCIENCES evapotranspiration evolution latitude Life Sciences Models, Theoretical nitrogen Nitrogen - metabolism nitrogen deposition Photosynthesis plant communities Plant Transpiration Plants - metabolism primary productivity process-based model remote-sensing stomatal conductance Terrestrial ecosystems vegetation Water - metabolism Water resources water use efficiency |
title | Change in terrestrial ecosystem water‐use efficiency over the last three decades |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20in%20terrestrial%20ecosystem%20water%E2%80%90use%20efficiency%20over%20the%20last%20three%20decades&rft.jtitle=Global%20change%20biology&rft.au=Huang,%20Mengtian&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-06&rft.volume=21&rft.issue=6&rft.spage=2366&rft.epage=2378&rft.pages=2366-2378&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12873&rft_dat=%3Cproquest_osti_%3E1676339050%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675833279&rft_id=info:pmid/25612078&rfr_iscdi=true |