Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model

An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2017-07, Vol.590-591 (C), p.663-675
Hauptverfasser: Turner, Sean W.D., Ng, Jia Yi, Galelli, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 675
container_issue C
container_start_page 663
container_title The Science of the total environment
container_volume 590-591
creator Turner, Sean W.D.
Ng, Jia Yi
Galelli, Stefano
description An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~−5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5–15%) without investing in new power generation facilities. [Display omitted] •We simulate 21st century climate impacts on global hydropower production.•Simulations incorporate more than half of global installed capacity.•A detailed dam model is used to capture plant and reservoir specifications.•Power production responds non-linearly to climate change.•The Balkans region emerges as most vulnerable to power production losses.
doi_str_mv 10.1016/j.scitotenv.2017.03.022
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1347968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969717305272</els_id><sourcerecordid>1876497964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-fb9c156cfe7af680deac75ec46c4309b5917c6724a90085e0b773ea7c884db833</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotOWvwAWKzZJ7Tz8WFZVoUiV2JS15Tg3E48cO9jJwPx7nE7pFm8sXX3nXPschD5RUlJC2c2hTMYuYQF_LCtCeUnqklTVG7SjgsuCkoq9RTtCGlFIJvkFukzpQPLhgr5HF5WoRF1JskP-_o-erLd-j_cudNphcGCWaLP9Cad1nt0JH1fnIerOum24BGycnfQC2Iza7wGvadNrPNr9WAy2h2duPPUxzOE3RNzrCU8hz6_Ru0G7BB9e7iv08-v9091D8fjj2_e728fCtLReiqGThrbMDMD1wATpQRvegmmYaWoiu1ZSbhivGi0JES2QjvMaNDdCNH0n6voKfT77hrRYtWUFZjTB-_w3ReuGSyYy9OUMzTH8WiEtarLJgHPaQ1iTylGyRma0ySg_oyaGlCIMao45gnhSlKitEXVQr42orRFFapUbycqPL0vWboL-VfevggzcngHIeRwtxM0IvIHexu21fbD_XfIXLtijhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876497964</pqid></control><display><type>article</type><title>Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Turner, Sean W.D. ; Ng, Jia Yi ; Galelli, Stefano</creator><creatorcontrib>Turner, Sean W.D. ; Ng, Jia Yi ; Galelli, Stefano ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~−5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5–15%) without investing in new power generation facilities. [Display omitted] •We simulate 21st century climate impacts on global hydropower production.•Simulations incorporate more than half of global installed capacity.•A detailed dam model is used to capture plant and reservoir specifications.•Power production responds non-linearly to climate change.•The Balkans region emerges as most vulnerable to power production losses.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2017.03.022</identifier><identifier>PMID: 28283290</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Climate change ; Dams ; Global ; HYDRO ENERGY ; Hydropower ; Water resources ; Water-energy nexus</subject><ispartof>The Science of the total environment, 2017-07, Vol.590-591 (C), p.663-675</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-fb9c156cfe7af680deac75ec46c4309b5917c6724a90085e0b773ea7c884db833</citedby><cites>FETCH-LOGICAL-c513t-fb9c156cfe7af680deac75ec46c4309b5917c6724a90085e0b773ea7c884db833</cites><orcidid>0000-0002-5442-9713 ; 0000-0003-2316-3243 ; 0000-0003-4400-9800 ; 0000000323163243 ; 0000000254429713 ; 0000000344009800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2017.03.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28283290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1347968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, Sean W.D.</creatorcontrib><creatorcontrib>Ng, Jia Yi</creatorcontrib><creatorcontrib>Galelli, Stefano</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~−5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5–15%) without investing in new power generation facilities. [Display omitted] •We simulate 21st century climate impacts on global hydropower production.•Simulations incorporate more than half of global installed capacity.•A detailed dam model is used to capture plant and reservoir specifications.•Power production responds non-linearly to climate change.•The Balkans region emerges as most vulnerable to power production losses.</description><subject>Climate change</subject><subject>Dams</subject><subject>Global</subject><subject>HYDRO ENERGY</subject><subject>Hydropower</subject><subject>Water resources</subject><subject>Water-energy nexus</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS0EotOWvwAWKzZJ7Tz8WFZVoUiV2JS15Tg3E48cO9jJwPx7nE7pFm8sXX3nXPschD5RUlJC2c2hTMYuYQF_LCtCeUnqklTVG7SjgsuCkoq9RTtCGlFIJvkFukzpQPLhgr5HF5WoRF1JskP-_o-erLd-j_cudNphcGCWaLP9Cad1nt0JH1fnIerOum24BGycnfQC2Iza7wGvadNrPNr9WAy2h2duPPUxzOE3RNzrCU8hz6_Ru0G7BB9e7iv08-v9091D8fjj2_e728fCtLReiqGThrbMDMD1wATpQRvegmmYaWoiu1ZSbhivGi0JES2QjvMaNDdCNH0n6voKfT77hrRYtWUFZjTB-_w3ReuGSyYy9OUMzTH8WiEtarLJgHPaQ1iTylGyRma0ySg_oyaGlCIMao45gnhSlKitEXVQr42orRFFapUbycqPL0vWboL-VfevggzcngHIeRwtxM0IvIHexu21fbD_XfIXLtijhA</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Turner, Sean W.D.</creator><creator>Ng, Jia Yi</creator><creator>Galelli, Stefano</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5442-9713</orcidid><orcidid>https://orcid.org/0000-0003-2316-3243</orcidid><orcidid>https://orcid.org/0000-0003-4400-9800</orcidid><orcidid>https://orcid.org/0000000323163243</orcidid><orcidid>https://orcid.org/0000000254429713</orcidid><orcidid>https://orcid.org/0000000344009800</orcidid></search><sort><creationdate>20170715</creationdate><title>Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model</title><author>Turner, Sean W.D. ; Ng, Jia Yi ; Galelli, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-fb9c156cfe7af680deac75ec46c4309b5917c6724a90085e0b773ea7c884db833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Climate change</topic><topic>Dams</topic><topic>Global</topic><topic>HYDRO ENERGY</topic><topic>Hydropower</topic><topic>Water resources</topic><topic>Water-energy nexus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, Sean W.D.</creatorcontrib><creatorcontrib>Ng, Jia Yi</creatorcontrib><creatorcontrib>Galelli, Stefano</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, Sean W.D.</au><au>Ng, Jia Yi</au><au>Galelli, Stefano</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>590-591</volume><issue>C</issue><spage>663</spage><epage>675</epage><pages>663-675</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~−5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5–15%) without investing in new power generation facilities. [Display omitted] •We simulate 21st century climate impacts on global hydropower production.•Simulations incorporate more than half of global installed capacity.•A detailed dam model is used to capture plant and reservoir specifications.•Power production responds non-linearly to climate change.•The Balkans region emerges as most vulnerable to power production losses.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28283290</pmid><doi>10.1016/j.scitotenv.2017.03.022</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5442-9713</orcidid><orcidid>https://orcid.org/0000-0003-2316-3243</orcidid><orcidid>https://orcid.org/0000-0003-4400-9800</orcidid><orcidid>https://orcid.org/0000000323163243</orcidid><orcidid>https://orcid.org/0000000254429713</orcidid><orcidid>https://orcid.org/0000000344009800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2017-07, Vol.590-591 (C), p.663-675
issn 0048-9697
1879-1026
language eng
recordid cdi_osti_scitechconnect_1347968
source Access via ScienceDirect (Elsevier)
subjects Climate change
Dams
Global
HYDRO ENERGY
Hydropower
Water resources
Water-energy nexus
title Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20global%20electricity%20supply%20vulnerability%20to%20climate%20change%20using%20a%20high-fidelity%20hydropower%20dam%20model&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Turner,%20Sean%20W.D.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2017-07-15&rft.volume=590-591&rft.issue=C&rft.spage=663&rft.epage=675&rft.pages=663-675&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2017.03.022&rft_dat=%3Cproquest_osti_%3E1876497964%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1876497964&rft_id=info:pmid/28283290&rft_els_id=S0048969717305272&rfr_iscdi=true