Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2017-02, Vol.160 (C), p.390-397
Hauptverfasser: Schwartz, Craig, Nordlund, Dennis, Sokaras, Dimosthenis, Contreras, Miguel, Weng, Tsu-Chien, Mansfield, Lorelle, Hurst, Katherine E., Dameron, Arrelaine, Ramanathan, Kannan, Prendergast, David, Christensen, Steven T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue C
container_start_page 390
container_title Solar energy materials and solar cells
container_volume 160
creator Schwartz, Craig
Nordlund, Dennis
Sokaras, Dimosthenis
Contreras, Miguel
Weng, Tsu-Chien
Mansfield, Lorelle
Hurst, Katherine E.
Dameron, Arrelaine
Ramanathan, Kannan
Prendergast, David
Christensen, Steven T.
description The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (
doi_str_mv 10.1016/j.solmat.2016.11.003
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1347563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024816304779</els_id><sourcerecordid>1956019090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c5a2f3390db7bed13f80ca2e3fb1224f758e13cac9966470dc2421335380ea53</originalsourceid><addsrcrecordid>eNp9kT9vFDEQxS0EEkfgG1BY0ECxy9jevw0SOkESKRJFUtBZPnuc82nXXmxfpKv54nhZ6lQjy-83em8eIe8Z1AxY9-VUpzDNKte8vGrGagDxguzY0I-VEOPwkuxg5H0FvBlekzcpnQCAd6LZkT_3wWb6q4rqQtUhhbhkFzxNC-ocQ9JhuVDnnzBl96j-fQVL8xFpOkerNFJ9xNmlHAvuDc0RVZ7R57TqCr1gLLxx55k-qmlap3EJJ_TOIP20v72-__yWvLJqSvju_7wiDz--P-xvqruf17f7b3eVFm2XK90qbkscMIf-gIYJO4BWHIU9MM4b27cDMqGVHseua3owmjecCdGKAVC14op82NaGEkYm7TLqow7el6iSiaZvO1FEHzfREsPvc4ktT-EcfbEl2dh2wEYYoaiaTaXLjVJEK5foZhUvkoFcK5EnuVUi10okY7JUUrCvG4Yl5ZPDuLpAr9G4uJowwT2_4C-OOZhN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956019090</pqid></control><display><type>article</type><title>Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)</title><source>Elsevier ScienceDirect Journals</source><creator>Schwartz, Craig ; Nordlund, Dennis ; Sokaras, Dimosthenis ; Contreras, Miguel ; Weng, Tsu-Chien ; Mansfield, Lorelle ; Hurst, Katherine E. ; Dameron, Arrelaine ; Ramanathan, Kannan ; Prendergast, David ; Christensen, Steven T.</creator><creatorcontrib>Schwartz, Craig ; Nordlund, Dennis ; Sokaras, Dimosthenis ; Contreras, Miguel ; Weng, Tsu-Chien ; Mansfield, Lorelle ; Hurst, Katherine E. ; Dameron, Arrelaine ; Ramanathan, Kannan ; Prendergast, David ; Christensen, Steven T. ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (&lt;19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide. •Solution processing of CIGS surface produces a common chemical structure.•Solution processing removes oxidation, contamination, and damage to the CIGS surface.•High efficincy CIGS films exhibit the most well-defined surface chemical structure.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2016.11.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption spectroscopy ; Ammonium ; Ammonium hydroxide ; Cadmium ; Cadmium sulfide ; Chemical bath deposition ; Chemical elements ; Chemistry ; CIGS ; Copper ; Copper indium gallium selenides ; Copper-indium-gallium-selenide ; Energy conversion efficiency ; Gallium ; Indium ; MATERIALS SCIENCE ; Oxygen ; Photovoltaic cells ; Photovoltaics ; Selenide ; Soft x rays ; Solar cells ; SOLAR ENERGY ; Spectroscopy ; Studies ; Sulfates ; Sulfide ; Sulfides ; Surface analysis ; Surface chemistry ; Surface structure ; Thiourea ; X-ray absorption spectroscopy ; X-ray spectroscopy ; XAS</subject><ispartof>Solar energy materials and solar cells, 2017-02, Vol.160 (C), p.390-397</ispartof><rights>2016</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-c5a2f3390db7bed13f80ca2e3fb1224f758e13cac9966470dc2421335380ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2016.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1347563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwartz, Craig</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Contreras, Miguel</creatorcontrib><creatorcontrib>Weng, Tsu-Chien</creatorcontrib><creatorcontrib>Mansfield, Lorelle</creatorcontrib><creatorcontrib>Hurst, Katherine E.</creatorcontrib><creatorcontrib>Dameron, Arrelaine</creatorcontrib><creatorcontrib>Ramanathan, Kannan</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Christensen, Steven T.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)</title><title>Solar energy materials and solar cells</title><description>The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (&lt;19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide. •Solution processing of CIGS surface produces a common chemical structure.•Solution processing removes oxidation, contamination, and damage to the CIGS surface.•High efficincy CIGS films exhibit the most well-defined surface chemical structure.</description><subject>Absorption spectroscopy</subject><subject>Ammonium</subject><subject>Ammonium hydroxide</subject><subject>Cadmium</subject><subject>Cadmium sulfide</subject><subject>Chemical bath deposition</subject><subject>Chemical elements</subject><subject>Chemistry</subject><subject>CIGS</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Copper-indium-gallium-selenide</subject><subject>Energy conversion efficiency</subject><subject>Gallium</subject><subject>Indium</subject><subject>MATERIALS SCIENCE</subject><subject>Oxygen</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Selenide</subject><subject>Soft x rays</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Sulfates</subject><subject>Sulfide</subject><subject>Sulfides</subject><subject>Surface analysis</subject><subject>Surface chemistry</subject><subject>Surface structure</subject><subject>Thiourea</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray spectroscopy</subject><subject>XAS</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kT9vFDEQxS0EEkfgG1BY0ECxy9jevw0SOkESKRJFUtBZPnuc82nXXmxfpKv54nhZ6lQjy-83em8eIe8Z1AxY9-VUpzDNKte8vGrGagDxguzY0I-VEOPwkuxg5H0FvBlekzcpnQCAd6LZkT_3wWb6q4rqQtUhhbhkFzxNC-ocQ9JhuVDnnzBl96j-fQVL8xFpOkerNFJ9xNmlHAvuDc0RVZ7R57TqCr1gLLxx55k-qmlap3EJJ_TOIP20v72-__yWvLJqSvju_7wiDz--P-xvqruf17f7b3eVFm2XK90qbkscMIf-gIYJO4BWHIU9MM4b27cDMqGVHseua3owmjecCdGKAVC14op82NaGEkYm7TLqow7el6iSiaZvO1FEHzfREsPvc4ktT-EcfbEl2dh2wEYYoaiaTaXLjVJEK5foZhUvkoFcK5EnuVUi10okY7JUUrCvG4Yl5ZPDuLpAr9G4uJowwT2_4C-OOZhN</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Schwartz, Craig</creator><creator>Nordlund, Dennis</creator><creator>Sokaras, Dimosthenis</creator><creator>Contreras, Miguel</creator><creator>Weng, Tsu-Chien</creator><creator>Mansfield, Lorelle</creator><creator>Hurst, Katherine E.</creator><creator>Dameron, Arrelaine</creator><creator>Ramanathan, Kannan</creator><creator>Prendergast, David</creator><creator>Christensen, Steven T.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201702</creationdate><title>Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)</title><author>Schwartz, Craig ; Nordlund, Dennis ; Sokaras, Dimosthenis ; Contreras, Miguel ; Weng, Tsu-Chien ; Mansfield, Lorelle ; Hurst, Katherine E. ; Dameron, Arrelaine ; Ramanathan, Kannan ; Prendergast, David ; Christensen, Steven T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c5a2f3390db7bed13f80ca2e3fb1224f758e13cac9966470dc2421335380ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption spectroscopy</topic><topic>Ammonium</topic><topic>Ammonium hydroxide</topic><topic>Cadmium</topic><topic>Cadmium sulfide</topic><topic>Chemical bath deposition</topic><topic>Chemical elements</topic><topic>Chemistry</topic><topic>CIGS</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Copper-indium-gallium-selenide</topic><topic>Energy conversion efficiency</topic><topic>Gallium</topic><topic>Indium</topic><topic>MATERIALS SCIENCE</topic><topic>Oxygen</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Selenide</topic><topic>Soft x rays</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Sulfates</topic><topic>Sulfide</topic><topic>Sulfides</topic><topic>Surface analysis</topic><topic>Surface chemistry</topic><topic>Surface structure</topic><topic>Thiourea</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray spectroscopy</topic><topic>XAS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, Craig</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Contreras, Miguel</creatorcontrib><creatorcontrib>Weng, Tsu-Chien</creatorcontrib><creatorcontrib>Mansfield, Lorelle</creatorcontrib><creatorcontrib>Hurst, Katherine E.</creatorcontrib><creatorcontrib>Dameron, Arrelaine</creatorcontrib><creatorcontrib>Ramanathan, Kannan</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Christensen, Steven T.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartz, Craig</au><au>Nordlund, Dennis</au><au>Sokaras, Dimosthenis</au><au>Contreras, Miguel</au><au>Weng, Tsu-Chien</au><au>Mansfield, Lorelle</au><au>Hurst, Katherine E.</au><au>Dameron, Arrelaine</au><au>Ramanathan, Kannan</au><au>Prendergast, David</au><au>Christensen, Steven T.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2017-02</date><risdate>2017</risdate><volume>160</volume><issue>C</issue><spage>390</spage><epage>397</epage><pages>390-397</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (&lt;19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide. •Solution processing of CIGS surface produces a common chemical structure.•Solution processing removes oxidation, contamination, and damage to the CIGS surface.•High efficincy CIGS films exhibit the most well-defined surface chemical structure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2016.11.003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2017-02, Vol.160 (C), p.390-397
issn 0927-0248
1879-3398
language eng
recordid cdi_osti_scitechconnect_1347563
source Elsevier ScienceDirect Journals
subjects Absorption spectroscopy
Ammonium
Ammonium hydroxide
Cadmium
Cadmium sulfide
Chemical bath deposition
Chemical elements
Chemistry
CIGS
Copper
Copper indium gallium selenides
Copper-indium-gallium-selenide
Energy conversion efficiency
Gallium
Indium
MATERIALS SCIENCE
Oxygen
Photovoltaic cells
Photovoltaics
Selenide
Soft x rays
Solar cells
SOLAR ENERGY
Spectroscopy
Studies
Sulfates
Sulfide
Sulfides
Surface analysis
Surface chemistry
Surface structure
Thiourea
X-ray absorption spectroscopy
X-ray spectroscopy
XAS
title Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20X-ray%20absorption%20spectroscopy%20investigation%20of%20the%20surface%20chemistry%20and%20treatments%20of%20copper%20indium%20gallium%20diselenide%20(CIGS)&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Schwartz,%20Craig&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-02&rft.volume=160&rft.issue=C&rft.spage=390&rft.epage=397&rft.pages=390-397&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2016.11.003&rft_dat=%3Cproquest_osti_%3E1956019090%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956019090&rft_id=info:pmid/&rft_els_id=S0927024816304779&rfr_iscdi=true