Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes

Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. We demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-12, Vol.138 (49), p.15853-15856
Hauptverfasser: Liu, Yuanyue, Xiao, Hai, Goddard, William A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15856
container_issue 49
container_start_page 15853
container_title Journal of the American Chemical Society
container_volume 138
creator Liu, Yuanyue
Xiao, Hai
Goddard, William A
description Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. We demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. On the basis of first-principles calculations, we find that the surface chemistry strongly affects Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, whereas F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weak Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control surface terminations based on calculated formation energies. This study enhances understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives predictions for improving 2D electronics.
doi_str_mv 10.1021/jacs.6b10834
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1347423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852671161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-4b3a8b38a13468cafdabcb09be07cf368252b2614bc41c7a93975fcb17c137573</originalsourceid><addsrcrecordid>eNptkE1vEzEQQC1ERdPCjTNaceJQF3-tvTlC2kKlIg4pEjfLnswSh6zd2l5V-ffdKAEunKyR3ryxHiFvObvkTPCPGwflUnvOOqlekBlvBaMtF_olmTHGBDWdlqfkrJTNNCrR8VfkVJi5ZlKoGbFLWKdaf-_oZ5dzwExvMmKzSLE6qKV5CnXd3D8lehUGjCWk6LbNEocAKa5GqCmXxu-a5Zh7B0iv468QETOumm8_MWJ5TU56ty345viekx831_eLr_Tu-5fbxac76pTQlSovXedl57hUugPXr5wHz-YemYFe6k60wgvNlQfFwbi5nJu2B88NcGlaI8_J-4M3lRpsgVAR1tMfI0K1k9QoISfowwF6yOlxxFLtEArgdusiprFY3rVCG841n9CLAwo5lZKxtw85DC7vLGd2393uu9tj9wl_dzSPfsDVX_hP6H-n91ubNOapY_m_6xmasouY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852671161</pqid></control><display><type>article</type><title>Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes</title><source>American Chemical Society Journals</source><creator>Liu, Yuanyue ; Xiao, Hai ; Goddard, William A</creator><creatorcontrib>Liu, Yuanyue ; Xiao, Hai ; Goddard, William A ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. We demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. On the basis of first-principles calculations, we find that the surface chemistry strongly affects Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, whereas F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weak Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control surface terminations based on calculated formation energies. This study enhances understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives predictions for improving 2D electronics.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b10834</identifier><identifier>PMID: 27960324</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>Journal of the American Chemical Society, 2016-12, Vol.138 (49), p.15853-15856</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-4b3a8b38a13468cafdabcb09be07cf368252b2614bc41c7a93975fcb17c137573</citedby><cites>FETCH-LOGICAL-a426t-4b3a8b38a13468cafdabcb09be07cf368252b2614bc41c7a93975fcb17c137573</cites><orcidid>0000-0002-5880-8649 ; 0000-0001-9399-1584 ; 0000-0003-0097-5716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b10834$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b10834$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27960324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1347423$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuanyue</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Goddard, William A</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. We demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. On the basis of first-principles calculations, we find that the surface chemistry strongly affects Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, whereas F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weak Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control surface terminations based on calculated formation energies. This study enhances understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives predictions for improving 2D electronics.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkE1vEzEQQC1ERdPCjTNaceJQF3-tvTlC2kKlIg4pEjfLnswSh6zd2l5V-ffdKAEunKyR3ryxHiFvObvkTPCPGwflUnvOOqlekBlvBaMtF_olmTHGBDWdlqfkrJTNNCrR8VfkVJi5ZlKoGbFLWKdaf-_oZ5dzwExvMmKzSLE6qKV5CnXd3D8lehUGjCWk6LbNEocAKa5GqCmXxu-a5Zh7B0iv468QETOumm8_MWJ5TU56ty345viekx831_eLr_Tu-5fbxac76pTQlSovXedl57hUugPXr5wHz-YemYFe6k60wgvNlQfFwbi5nJu2B88NcGlaI8_J-4M3lRpsgVAR1tMfI0K1k9QoISfowwF6yOlxxFLtEArgdusiprFY3rVCG841n9CLAwo5lZKxtw85DC7vLGd2393uu9tj9wl_dzSPfsDVX_hP6H-n91ubNOapY_m_6xmasouY</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Liu, Yuanyue</creator><creator>Xiao, Hai</creator><creator>Goddard, William A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5880-8649</orcidid><orcidid>https://orcid.org/0000-0001-9399-1584</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid></search><sort><creationdate>20161214</creationdate><title>Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes</title><author>Liu, Yuanyue ; Xiao, Hai ; Goddard, William A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-4b3a8b38a13468cafdabcb09be07cf368252b2614bc41c7a93975fcb17c137573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuanyue</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Goddard, William A</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuanyue</au><au>Xiao, Hai</au><au>Goddard, William A</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-12-14</date><risdate>2016</risdate><volume>138</volume><issue>49</issue><spage>15853</spage><epage>15856</epage><pages>15853-15856</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. We demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. On the basis of first-principles calculations, we find that the surface chemistry strongly affects Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, whereas F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weak Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control surface terminations based on calculated formation energies. This study enhances understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives predictions for improving 2D electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27960324</pmid><doi>10.1021/jacs.6b10834</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5880-8649</orcidid><orcidid>https://orcid.org/0000-0001-9399-1584</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-12, Vol.138 (49), p.15853-15856
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1347423
source American Chemical Society Journals
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
title Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schottky-Barrier-Free%20Contacts%20with%20Two-Dimensional%20Semiconductors%20by%20Surface-Engineered%20MXenes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Liu,%20Yuanyue&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2016-12-14&rft.volume=138&rft.issue=49&rft.spage=15853&rft.epage=15856&rft.pages=15853-15856&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b10834&rft_dat=%3Cproquest_osti_%3E1852671161%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852671161&rft_id=info:pmid/27960324&rfr_iscdi=true