Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies

It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2017-03, Vol.12 (3), p.34025
Hauptverfasser: Gao, Zhongming, Liu, Heping, Katul, Gabriel G, Foken, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 34025
container_title Environmental research letters
container_volume 12
creator Gao, Zhongming
Liu, Heping
Katul, Gabriel G
Foken, Thomas
description It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoff and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.
doi_str_mv 10.1088/1748-9326/aa625b
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1347044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2ca0610c489b4c76aeef40c342ead805</doaj_id><sourcerecordid>2549158312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e21079a714dd100668dd30fff00eacad639c1d0a7bc20e38ba5e5b26ca3ab2213</originalsourceid><addsrcrecordid>eNp1UcuO1DAQtBBILAN3jhZcCdt-5HVEKx4rreACZ6tjt2c8ysbBzsDOJ_DXOGS1cOHU5XJ1dbeKsZcC3groukvR6q7qlWwuERtZD4_YxQP1-B_8lD3L-QhQ67rtLtivz3Gq7BjzKRGPni8H4gV7tMRporQ_8wFHnNbn3TximMjx4cznA2biLnhPidbfgZafRBP_QWkJFscCxmjDcuY4OZ4LgymvE0rdE8flNub5QClYTs4Fys_ZE49jphf3dce-fXj_9epTdfPl4_XVu5vKaq2WiqSAtsdWaOcEQNN0zinw3gMQWnSN6q1wgO1gJZDqBqypHmRjUeEgpVA7dr35uohHM6dwi-lsIgbzh4hpb3A9YSQjLUIjwOquH7RtGyTyGqzSktB1UBevV5tXzEswuZxL9mDjNJFdjFC6hbLzjr3eRHOK30-UF3OMpzSVG42sdS_qTglZVLCpbIo5J_IPqwkwa8JmjdCsEZot4dLyZmsJcf7r-V_5bwt4qSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549158312</pqid></control><display><type>article</type><title>Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Gao, Zhongming ; Liu, Heping ; Katul, Gabriel G ; Foken, Thomas</creator><creatorcontrib>Gao, Zhongming ; Liu, Heping ; Katul, Gabriel G ; Foken, Thomas ; Washington State Univ., Pullman, WA (United States)</creatorcontrib><description>It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoff and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/aa625b</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Advection ; Aerodynamics ; Air temperature ; BASIC BIOLOGICAL SCIENCES ; biochemical research methods ; Eddies ; eddy covariance fluxes ; Energy balance ; ensemble empirical mode decomposition ; Enthalpy ; Entrainment ; Heat flux ; Heat transfer ; horizontal advection ; Induction heating ; large eddies ; Latent heat ; mathematical &amp; computational biology ; Phase shift ; Scalars ; Sensible heat ; Surface energy ; Surface layers ; Surface properties ; Temperature ; Vapor density ; Velocity ; Water vapor</subject><ispartof>Environmental research letters, 2017-03, Vol.12 (3), p.34025</ispartof><rights>2017 IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e21079a714dd100668dd30fff00eacad639c1d0a7bc20e38ba5e5b26ca3ab2213</citedby><cites>FETCH-LOGICAL-c443t-e21079a714dd100668dd30fff00eacad639c1d0a7bc20e38ba5e5b26ca3ab2213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/aa625b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,27924,27925,38868,38890,53840,53867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1347044$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Zhongming</creatorcontrib><creatorcontrib>Liu, Heping</creatorcontrib><creatorcontrib>Katul, Gabriel G</creatorcontrib><creatorcontrib>Foken, Thomas</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States)</creatorcontrib><title>Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoff and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.</description><subject>Advection</subject><subject>Aerodynamics</subject><subject>Air temperature</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biochemical research methods</subject><subject>Eddies</subject><subject>eddy covariance fluxes</subject><subject>Energy balance</subject><subject>ensemble empirical mode decomposition</subject><subject>Enthalpy</subject><subject>Entrainment</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>horizontal advection</subject><subject>Induction heating</subject><subject>large eddies</subject><subject>Latent heat</subject><subject>mathematical &amp; computational biology</subject><subject>Phase shift</subject><subject>Scalars</subject><subject>Sensible heat</subject><subject>Surface energy</subject><subject>Surface layers</subject><subject>Surface properties</subject><subject>Temperature</subject><subject>Vapor density</subject><subject>Velocity</subject><subject>Water vapor</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1UcuO1DAQtBBILAN3jhZcCdt-5HVEKx4rreACZ6tjt2c8ysbBzsDOJ_DXOGS1cOHU5XJ1dbeKsZcC3groukvR6q7qlWwuERtZD4_YxQP1-B_8lD3L-QhQ67rtLtivz3Gq7BjzKRGPni8H4gV7tMRporQ_8wFHnNbn3TximMjx4cznA2biLnhPidbfgZafRBP_QWkJFscCxmjDcuY4OZ4LgymvE0rdE8flNub5QClYTs4Fys_ZE49jphf3dce-fXj_9epTdfPl4_XVu5vKaq2WiqSAtsdWaOcEQNN0zinw3gMQWnSN6q1wgO1gJZDqBqypHmRjUeEgpVA7dr35uohHM6dwi-lsIgbzh4hpb3A9YSQjLUIjwOquH7RtGyTyGqzSktB1UBevV5tXzEswuZxL9mDjNJFdjFC6hbLzjr3eRHOK30-UF3OMpzSVG42sdS_qTglZVLCpbIo5J_IPqwkwa8JmjdCsEZot4dLyZmsJcf7r-V_5bwt4qSQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Gao, Zhongming</creator><creator>Liu, Heping</creator><creator>Katul, Gabriel G</creator><creator>Foken, Thomas</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20170301</creationdate><title>Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies</title><author>Gao, Zhongming ; Liu, Heping ; Katul, Gabriel G ; Foken, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e21079a714dd100668dd30fff00eacad639c1d0a7bc20e38ba5e5b26ca3ab2213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advection</topic><topic>Aerodynamics</topic><topic>Air temperature</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biochemical research methods</topic><topic>Eddies</topic><topic>eddy covariance fluxes</topic><topic>Energy balance</topic><topic>ensemble empirical mode decomposition</topic><topic>Enthalpy</topic><topic>Entrainment</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>horizontal advection</topic><topic>Induction heating</topic><topic>large eddies</topic><topic>Latent heat</topic><topic>mathematical &amp; computational biology</topic><topic>Phase shift</topic><topic>Scalars</topic><topic>Sensible heat</topic><topic>Surface energy</topic><topic>Surface layers</topic><topic>Surface properties</topic><topic>Temperature</topic><topic>Vapor density</topic><topic>Velocity</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zhongming</creatorcontrib><creatorcontrib>Liu, Heping</creatorcontrib><creatorcontrib>Katul, Gabriel G</creatorcontrib><creatorcontrib>Foken, Thomas</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Zhongming</au><au>Liu, Heping</au><au>Katul, Gabriel G</au><au>Foken, Thomas</au><aucorp>Washington State Univ., Pullman, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>34025</spage><pages>34025-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoff and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/aa625b</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2017-03, Vol.12 (3), p.34025
issn 1748-9326
1748-9326
language eng
recordid cdi_osti_scitechconnect_1347044
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Advection
Aerodynamics
Air temperature
BASIC BIOLOGICAL SCIENCES
biochemical research methods
Eddies
eddy covariance fluxes
Energy balance
ensemble empirical mode decomposition
Enthalpy
Entrainment
Heat flux
Heat transfer
horizontal advection
Induction heating
large eddies
Latent heat
mathematical & computational biology
Phase shift
Scalars
Sensible heat
Surface energy
Surface layers
Surface properties
Temperature
Vapor density
Velocity
Water vapor
title Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-closure%20of%20the%20surface%20energy%20balance%20explained%20by%20phase%20difference%20between%20vertical%20velocity%20and%20scalars%20of%20large%20atmospheric%20eddies&rft.jtitle=Environmental%20research%20letters&rft.au=Gao,%20Zhongming&rft.aucorp=Washington%20State%20Univ.,%20Pullman,%20WA%20(United%20States)&rft.date=2017-03-01&rft.volume=12&rft.issue=3&rft.spage=34025&rft.pages=34025-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/aa625b&rft_dat=%3Cproquest_osti_%3E2549158312%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549158312&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2ca0610c489b4c76aeef40c342ead805&rfr_iscdi=true