Block Co-PolyMOCs by Stepwise Self-Assembly

We report a stepwise assembly strategy for the integration of metal–organic cages (MOCs) into block copolymers (BCPs). This approach creates “block co-polyMOC” (BCPMOC) materials whose microscopic structures and mechanical properties are readily tunable by adjusting the size and geometry of the MOCs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-08, Vol.138 (33), p.10708-10715
Hauptverfasser: Wang, Yufeng, Zhong, Mingjiang, Park, Jiwon V, Zhukhovitskiy, Aleksandr V, Shi, Weichao, Johnson, Jeremiah A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10715
container_issue 33
container_start_page 10708
container_title Journal of the American Chemical Society
container_volume 138
creator Wang, Yufeng
Zhong, Mingjiang
Park, Jiwon V
Zhukhovitskiy, Aleksandr V
Shi, Weichao
Johnson, Jeremiah A
description We report a stepwise assembly strategy for the integration of metal–organic cages (MOCs) into block copolymers (BCPs). This approach creates “block co-polyMOC” (BCPMOC) materials whose microscopic structures and mechanical properties are readily tunable by adjusting the size and geometry of the MOCs and the composition of the BCPs. In the first assembly step, BCPs functionalized with a pyridyl ligand on the chain end form star-shaped polymers triggered by metal-coordination-induced MOC assembly. The type of MOC junction employed precisely determines the number of arms for the star polymer. In the second step, microphase separation of the BCP is induced, physically cross-linking the star polymers and producing the desired BCPMOC networks in the bulk or gel state. We demonstrate that large spherical M12L24 MOCs, small paddlewheel M2L4 MOCs, or a mixture of both can be incorporated into BCPMOCs to provide materials with tailored branch functionality, phase separation, microdomain spacing, and mechanical properties. Given the synthetic and functional diversity of MOCs and BCPs, our method should enable access to BCPMOCs for a wide range of applications.
doi_str_mv 10.1021/jacs.6b06712
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1346237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1814141303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-bbdfb5fd0f5a94e1c4d0d5ff2e678ada126b335e0f352beeacf5a05dc52d6b7d3</originalsourceid><addsrcrecordid>eNptkMtLw0AQhxdRbK3ePEvwJGjqPrKbeKzBF1QqVM_LPmYxNcnWbILkvzelVS8yh2Hgm98MH0KnBE8JpuR6pUyYCo1FSugeGhNOccwJFftojDGmcZoJNkJHIayGMaEZOUQjmiaCpUKM0eVt6c1HlPv4xZf98yIPke6jZQvrryJAtITSxbMQoNJlf4wOnCoDnOz6BL3d373mj_F88fCUz-axSkjaxlpbp7mz2HF1kwAxicWWO0dBpJmyavhNM8YBO8apBlBmADG3hlMrdGrZBJ1vc31oCxlM0YJ5N76uwbSSsERQlg7QxRZaN_6zg9DKqggGylLV4LsgSUaSoRhmA3q1RU3jQ2jAyXVTVKrpJcFy41BuHMqdwwE_2yV3ugL7C_9I-zu92Vr5rqkHG_9nfQN_8Hjf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814141303</pqid></control><display><type>article</type><title>Block Co-PolyMOCs by Stepwise Self-Assembly</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wang, Yufeng ; Zhong, Mingjiang ; Park, Jiwon V ; Zhukhovitskiy, Aleksandr V ; Shi, Weichao ; Johnson, Jeremiah A</creator><creatorcontrib>Wang, Yufeng ; Zhong, Mingjiang ; Park, Jiwon V ; Zhukhovitskiy, Aleksandr V ; Shi, Weichao ; Johnson, Jeremiah A ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>We report a stepwise assembly strategy for the integration of metal–organic cages (MOCs) into block copolymers (BCPs). This approach creates “block co-polyMOC” (BCPMOC) materials whose microscopic structures and mechanical properties are readily tunable by adjusting the size and geometry of the MOCs and the composition of the BCPs. In the first assembly step, BCPs functionalized with a pyridyl ligand on the chain end form star-shaped polymers triggered by metal-coordination-induced MOC assembly. The type of MOC junction employed precisely determines the number of arms for the star polymer. In the second step, microphase separation of the BCP is induced, physically cross-linking the star polymers and producing the desired BCPMOC networks in the bulk or gel state. We demonstrate that large spherical M12L24 MOCs, small paddlewheel M2L4 MOCs, or a mixture of both can be incorporated into BCPMOCs to provide materials with tailored branch functionality, phase separation, microdomain spacing, and mechanical properties. Given the synthetic and functional diversity of MOCs and BCPs, our method should enable access to BCPMOCs for a wide range of applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b06712</identifier><identifier>PMID: 27463766</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylates - chemistry ; Mechanical Phenomena ; Metal-Organic Frameworks - chemistry ; Polymethyl Methacrylate - chemistry</subject><ispartof>Journal of the American Chemical Society, 2016-08, Vol.138 (33), p.10708-10715</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-bbdfb5fd0f5a94e1c4d0d5ff2e678ada126b335e0f352beeacf5a05dc52d6b7d3</citedby><cites>FETCH-LOGICAL-a417t-bbdfb5fd0f5a94e1c4d0d5ff2e678ada126b335e0f352beeacf5a05dc52d6b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b06712$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b06712$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27463766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1346237$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Zhong, Mingjiang</creatorcontrib><creatorcontrib>Park, Jiwon V</creatorcontrib><creatorcontrib>Zhukhovitskiy, Aleksandr V</creatorcontrib><creatorcontrib>Shi, Weichao</creatorcontrib><creatorcontrib>Johnson, Jeremiah A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Block Co-PolyMOCs by Stepwise Self-Assembly</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report a stepwise assembly strategy for the integration of metal–organic cages (MOCs) into block copolymers (BCPs). This approach creates “block co-polyMOC” (BCPMOC) materials whose microscopic structures and mechanical properties are readily tunable by adjusting the size and geometry of the MOCs and the composition of the BCPs. In the first assembly step, BCPs functionalized with a pyridyl ligand on the chain end form star-shaped polymers triggered by metal-coordination-induced MOC assembly. The type of MOC junction employed precisely determines the number of arms for the star polymer. In the second step, microphase separation of the BCP is induced, physically cross-linking the star polymers and producing the desired BCPMOC networks in the bulk or gel state. We demonstrate that large spherical M12L24 MOCs, small paddlewheel M2L4 MOCs, or a mixture of both can be incorporated into BCPMOCs to provide materials with tailored branch functionality, phase separation, microdomain spacing, and mechanical properties. Given the synthetic and functional diversity of MOCs and BCPs, our method should enable access to BCPMOCs for a wide range of applications.</description><subject>Acrylates - chemistry</subject><subject>Mechanical Phenomena</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Polymethyl Methacrylate - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtLw0AQhxdRbK3ePEvwJGjqPrKbeKzBF1QqVM_LPmYxNcnWbILkvzelVS8yh2Hgm98MH0KnBE8JpuR6pUyYCo1FSugeGhNOccwJFftojDGmcZoJNkJHIayGMaEZOUQjmiaCpUKM0eVt6c1HlPv4xZf98yIPke6jZQvrryJAtITSxbMQoNJlf4wOnCoDnOz6BL3d373mj_F88fCUz-axSkjaxlpbp7mz2HF1kwAxicWWO0dBpJmyavhNM8YBO8apBlBmADG3hlMrdGrZBJ1vc31oCxlM0YJ5N76uwbSSsERQlg7QxRZaN_6zg9DKqggGylLV4LsgSUaSoRhmA3q1RU3jQ2jAyXVTVKrpJcFy41BuHMqdwwE_2yV3ugL7C_9I-zu92Vr5rqkHG_9nfQN_8Hjf</recordid><startdate>20160824</startdate><enddate>20160824</enddate><creator>Wang, Yufeng</creator><creator>Zhong, Mingjiang</creator><creator>Park, Jiwon V</creator><creator>Zhukhovitskiy, Aleksandr V</creator><creator>Shi, Weichao</creator><creator>Johnson, Jeremiah A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20160824</creationdate><title>Block Co-PolyMOCs by Stepwise Self-Assembly</title><author>Wang, Yufeng ; Zhong, Mingjiang ; Park, Jiwon V ; Zhukhovitskiy, Aleksandr V ; Shi, Weichao ; Johnson, Jeremiah A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-bbdfb5fd0f5a94e1c4d0d5ff2e678ada126b335e0f352beeacf5a05dc52d6b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acrylates - chemistry</topic><topic>Mechanical Phenomena</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Polymethyl Methacrylate - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Zhong, Mingjiang</creatorcontrib><creatorcontrib>Park, Jiwon V</creatorcontrib><creatorcontrib>Zhukhovitskiy, Aleksandr V</creatorcontrib><creatorcontrib>Shi, Weichao</creatorcontrib><creatorcontrib>Johnson, Jeremiah A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yufeng</au><au>Zhong, Mingjiang</au><au>Park, Jiwon V</au><au>Zhukhovitskiy, Aleksandr V</au><au>Shi, Weichao</au><au>Johnson, Jeremiah A</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block Co-PolyMOCs by Stepwise Self-Assembly</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-08-24</date><risdate>2016</risdate><volume>138</volume><issue>33</issue><spage>10708</spage><epage>10715</epage><pages>10708-10715</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report a stepwise assembly strategy for the integration of metal–organic cages (MOCs) into block copolymers (BCPs). This approach creates “block co-polyMOC” (BCPMOC) materials whose microscopic structures and mechanical properties are readily tunable by adjusting the size and geometry of the MOCs and the composition of the BCPs. In the first assembly step, BCPs functionalized with a pyridyl ligand on the chain end form star-shaped polymers triggered by metal-coordination-induced MOC assembly. The type of MOC junction employed precisely determines the number of arms for the star polymer. In the second step, microphase separation of the BCP is induced, physically cross-linking the star polymers and producing the desired BCPMOC networks in the bulk or gel state. We demonstrate that large spherical M12L24 MOCs, small paddlewheel M2L4 MOCs, or a mixture of both can be incorporated into BCPMOCs to provide materials with tailored branch functionality, phase separation, microdomain spacing, and mechanical properties. Given the synthetic and functional diversity of MOCs and BCPs, our method should enable access to BCPMOCs for a wide range of applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27463766</pmid><doi>10.1021/jacs.6b06712</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-08, Vol.138 (33), p.10708-10715
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1346237
source MEDLINE; ACS Publications
subjects Acrylates - chemistry
Mechanical Phenomena
Metal-Organic Frameworks - chemistry
Polymethyl Methacrylate - chemistry
title Block Co-PolyMOCs by Stepwise Self-Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block%20Co-PolyMOCs%20by%20Stepwise%20Self-Assembly&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wang,%20Yufeng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-08-24&rft.volume=138&rft.issue=33&rft.spage=10708&rft.epage=10715&rft.pages=10708-10715&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b06712&rft_dat=%3Cproquest_osti_%3E1814141303%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814141303&rft_id=info:pmid/27463766&rfr_iscdi=true