Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes

Electrocatalytic reduction of CO2 to CO is reported for the complex, {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), containing four pendant methoxy groups, where [(MeO)2Ph]2bpy = 6,6′-bis­(2,6-dimethoxyphenyl)-2,2′-bipyridine. In addition to a steric influence similar to that previously established [...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-02, Vol.139 (7), p.2604-2618
Hauptverfasser: Ngo, Ken T, McKinnon, Meaghan, Mahanti, Bani, Narayanan, Remya, Grills, David C, Ertem, Mehmed Z, Rochford, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2618
container_issue 7
container_start_page 2604
container_title Journal of the American Chemical Society
container_volume 139
creator Ngo, Ken T
McKinnon, Meaghan
Mahanti, Bani
Narayanan, Remya
Grills, David C
Ertem, Mehmed Z
Rochford, Jonathan
description Electrocatalytic reduction of CO2 to CO is reported for the complex, {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), containing four pendant methoxy groups, where [(MeO)2Ph]2bpy = 6,6′-bis­(2,6-dimethoxyphenyl)-2,2′-bipyridine. In addition to a steric influence similar to that previously established [Sampson, M. D. et al. J. Am. Chem. Soc. 2014, 136, 5460−5471] for the 6,6′-dimesityl-2,2′-bipyridine ligand in [fac-MnI(mes2bpy)­(CO)3(CH3CN)]­(OTf), which prevents Mn0–Mn0 dimerization, the [(MeO)2Ph]2bpy ligand introduces an additional electronic influence combined with a weak allosteric hydrogen-bonding interaction that significantly lowers the activation barrier for C–OH bond cleavage from the metallocarboxylic acid intermediate. This provides access to the thus far elusive protonation-first pathway, minimizing the required overpotential for electrocatalytic CO2 to CO conversion by Mn­(I) polypyridyl catalysts, while concurrently maintaining a respectable turnover frequency. Comprehensive electrochemical and computational studies here confirm the positive influence of the [(MeO)2Ph]2bpy ligand framework on electrocatalytic CO2 reduction and its dependence upon the concentration and pK a of the external Brønsted acid proton source (water, methanol, trifluoroethanol, and phenol) that is required for this class of manganese catalyst. Linear sweep voltammetry studies show that both phenol and trifluoroethanol as proton sources exhibit the largest protonation-first catalytic currents in combination with {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), saving up to 0.55 V in overpotential with respect to the thermodynamically demanding reduction-first pathway, while bulk electrolysis studies confirm a high product selectivity for CO formation. To gain further insight into catalyst activation, time-resolved infrared (TRIR) spectroscopy combined with pulse-radiolysis (PR-TRIR), infrared spectroelectrochemistry, and density functional theory calculations were used to establish the v(CO) stretching frequencies and energetics of key redox intermediates relevant to catalyst activation.
doi_str_mv 10.1021/jacs.6b08776
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1345736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861857111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-9b24501a0a4d6d07fa27e2d66f0c5b3fdd2a62e70dd66f0ce07681fd4912a0fc3</originalsourceid><addsrcrecordid>eNpFUU1PwyAYJkYT5_TmDyCevHQCbaE7auPUZGaLmWdCgW4sHUygcf33smyJp_cjz_vm-QDgHqMJRgQ_bYUME9qgijF6AUa4JCgrMaGXYIQQIhmraH4NbkLYprEgFR6Bw6r31tg1dBbGjYZL76KzIhpns5nxIcKliJtfMcDWefjaaRm9kyKKbohGwnpB4JdWvTwewGaAn8KuhdVBwxezH7xRQwdX3kjhG2dTX7vdvtMHHW7BVSu6oO_OdQy-Z6-r-j2bL94-6ud5JkhVxmzakKJEWCBRKKoQawVhmihKWyTLJm-VIoISzZA67TRitMKtKqaYCNTKfAweTn9diIYHaaKWG-msTUo4zouS5TSBHk-gvXc_vQ6R70yQuuuSFNcHjiuKq5JhjP-hyWu-dcm9xJ5jxI8J8GMC_JxA_geb0ntZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861857111</pqid></control><display><type>article</type><title>Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes</title><source>ACS Publications</source><creator>Ngo, Ken T ; McKinnon, Meaghan ; Mahanti, Bani ; Narayanan, Remya ; Grills, David C ; Ertem, Mehmed Z ; Rochford, Jonathan</creator><creatorcontrib>Ngo, Ken T ; McKinnon, Meaghan ; Mahanti, Bani ; Narayanan, Remya ; Grills, David C ; Ertem, Mehmed Z ; Rochford, Jonathan ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Electrocatalytic reduction of CO2 to CO is reported for the complex, {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), containing four pendant methoxy groups, where [(MeO)2Ph]2bpy = 6,6′-bis­(2,6-dimethoxyphenyl)-2,2′-bipyridine. In addition to a steric influence similar to that previously established [Sampson, M. D. et al. J. Am. Chem. Soc. 2014, 136, 5460−5471] for the 6,6′-dimesityl-2,2′-bipyridine ligand in [fac-MnI(mes2bpy)­(CO)3(CH3CN)]­(OTf), which prevents Mn0–Mn0 dimerization, the [(MeO)2Ph]2bpy ligand introduces an additional electronic influence combined with a weak allosteric hydrogen-bonding interaction that significantly lowers the activation barrier for C–OH bond cleavage from the metallocarboxylic acid intermediate. This provides access to the thus far elusive protonation-first pathway, minimizing the required overpotential for electrocatalytic CO2 to CO conversion by Mn­(I) polypyridyl catalysts, while concurrently maintaining a respectable turnover frequency. Comprehensive electrochemical and computational studies here confirm the positive influence of the [(MeO)2Ph]2bpy ligand framework on electrocatalytic CO2 reduction and its dependence upon the concentration and pK a of the external Brønsted acid proton source (water, methanol, trifluoroethanol, and phenol) that is required for this class of manganese catalyst. Linear sweep voltammetry studies show that both phenol and trifluoroethanol as proton sources exhibit the largest protonation-first catalytic currents in combination with {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), saving up to 0.55 V in overpotential with respect to the thermodynamically demanding reduction-first pathway, while bulk electrolysis studies confirm a high product selectivity for CO formation. To gain further insight into catalyst activation, time-resolved infrared (TRIR) spectroscopy combined with pulse-radiolysis (PR-TRIR), infrared spectroelectrochemistry, and density functional theory calculations were used to establish the v(CO) stretching frequencies and energetics of key redox intermediates relevant to catalyst activation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b08776</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CO2 reduction ; electrocatalysis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; manganese ; pulse radiolysis</subject><ispartof>Journal of the American Chemical Society, 2017-02, Vol.139 (7), p.2604-2618</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2397-9162 ; 0000-0001-8349-9158 ; 0000000323979162 ; 0000000183499158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b08776$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b08776$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1345736$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngo, Ken T</creatorcontrib><creatorcontrib>McKinnon, Meaghan</creatorcontrib><creatorcontrib>Mahanti, Bani</creatorcontrib><creatorcontrib>Narayanan, Remya</creatorcontrib><creatorcontrib>Grills, David C</creatorcontrib><creatorcontrib>Ertem, Mehmed Z</creatorcontrib><creatorcontrib>Rochford, Jonathan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Electrocatalytic reduction of CO2 to CO is reported for the complex, {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), containing four pendant methoxy groups, where [(MeO)2Ph]2bpy = 6,6′-bis­(2,6-dimethoxyphenyl)-2,2′-bipyridine. In addition to a steric influence similar to that previously established [Sampson, M. D. et al. J. Am. Chem. Soc. 2014, 136, 5460−5471] for the 6,6′-dimesityl-2,2′-bipyridine ligand in [fac-MnI(mes2bpy)­(CO)3(CH3CN)]­(OTf), which prevents Mn0–Mn0 dimerization, the [(MeO)2Ph]2bpy ligand introduces an additional electronic influence combined with a weak allosteric hydrogen-bonding interaction that significantly lowers the activation barrier for C–OH bond cleavage from the metallocarboxylic acid intermediate. This provides access to the thus far elusive protonation-first pathway, minimizing the required overpotential for electrocatalytic CO2 to CO conversion by Mn­(I) polypyridyl catalysts, while concurrently maintaining a respectable turnover frequency. Comprehensive electrochemical and computational studies here confirm the positive influence of the [(MeO)2Ph]2bpy ligand framework on electrocatalytic CO2 reduction and its dependence upon the concentration and pK a of the external Brønsted acid proton source (water, methanol, trifluoroethanol, and phenol) that is required for this class of manganese catalyst. Linear sweep voltammetry studies show that both phenol and trifluoroethanol as proton sources exhibit the largest protonation-first catalytic currents in combination with {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), saving up to 0.55 V in overpotential with respect to the thermodynamically demanding reduction-first pathway, while bulk electrolysis studies confirm a high product selectivity for CO formation. To gain further insight into catalyst activation, time-resolved infrared (TRIR) spectroscopy combined with pulse-radiolysis (PR-TRIR), infrared spectroelectrochemistry, and density functional theory calculations were used to establish the v(CO) stretching frequencies and energetics of key redox intermediates relevant to catalyst activation.</description><subject>CO2 reduction</subject><subject>electrocatalysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>manganese</subject><subject>pulse radiolysis</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFUU1PwyAYJkYT5_TmDyCevHQCbaE7auPUZGaLmWdCgW4sHUygcf33smyJp_cjz_vm-QDgHqMJRgQ_bYUME9qgijF6AUa4JCgrMaGXYIQQIhmraH4NbkLYprEgFR6Bw6r31tg1dBbGjYZL76KzIhpns5nxIcKliJtfMcDWefjaaRm9kyKKbohGwnpB4JdWvTwewGaAn8KuhdVBwxezH7xRQwdX3kjhG2dTX7vdvtMHHW7BVSu6oO_OdQy-Z6-r-j2bL94-6ud5JkhVxmzakKJEWCBRKKoQawVhmihKWyTLJm-VIoISzZA67TRitMKtKqaYCNTKfAweTn9diIYHaaKWG-msTUo4zouS5TSBHk-gvXc_vQ6R70yQuuuSFNcHjiuKq5JhjP-hyWu-dcm9xJ5jxI8J8GMC_JxA_geb0ntZ</recordid><startdate>20170222</startdate><enddate>20170222</enddate><creator>Ngo, Ken T</creator><creator>McKinnon, Meaghan</creator><creator>Mahanti, Bani</creator><creator>Narayanan, Remya</creator><creator>Grills, David C</creator><creator>Ertem, Mehmed Z</creator><creator>Rochford, Jonathan</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2397-9162</orcidid><orcidid>https://orcid.org/0000-0001-8349-9158</orcidid><orcidid>https://orcid.org/0000000323979162</orcidid><orcidid>https://orcid.org/0000000183499158</orcidid></search><sort><creationdate>20170222</creationdate><title>Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes</title><author>Ngo, Ken T ; McKinnon, Meaghan ; Mahanti, Bani ; Narayanan, Remya ; Grills, David C ; Ertem, Mehmed Z ; Rochford, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-9b24501a0a4d6d07fa27e2d66f0c5b3fdd2a62e70dd66f0ce07681fd4912a0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CO2 reduction</topic><topic>electrocatalysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>manganese</topic><topic>pulse radiolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngo, Ken T</creatorcontrib><creatorcontrib>McKinnon, Meaghan</creatorcontrib><creatorcontrib>Mahanti, Bani</creatorcontrib><creatorcontrib>Narayanan, Remya</creatorcontrib><creatorcontrib>Grills, David C</creatorcontrib><creatorcontrib>Ertem, Mehmed Z</creatorcontrib><creatorcontrib>Rochford, Jonathan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo, Ken T</au><au>McKinnon, Meaghan</au><au>Mahanti, Bani</au><au>Narayanan, Remya</au><au>Grills, David C</au><au>Ertem, Mehmed Z</au><au>Rochford, Jonathan</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-02-22</date><risdate>2017</risdate><volume>139</volume><issue>7</issue><spage>2604</spage><epage>2618</epage><pages>2604-2618</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Electrocatalytic reduction of CO2 to CO is reported for the complex, {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), containing four pendant methoxy groups, where [(MeO)2Ph]2bpy = 6,6′-bis­(2,6-dimethoxyphenyl)-2,2′-bipyridine. In addition to a steric influence similar to that previously established [Sampson, M. D. et al. J. Am. Chem. Soc. 2014, 136, 5460−5471] for the 6,6′-dimesityl-2,2′-bipyridine ligand in [fac-MnI(mes2bpy)­(CO)3(CH3CN)]­(OTf), which prevents Mn0–Mn0 dimerization, the [(MeO)2Ph]2bpy ligand introduces an additional electronic influence combined with a weak allosteric hydrogen-bonding interaction that significantly lowers the activation barrier for C–OH bond cleavage from the metallocarboxylic acid intermediate. This provides access to the thus far elusive protonation-first pathway, minimizing the required overpotential for electrocatalytic CO2 to CO conversion by Mn­(I) polypyridyl catalysts, while concurrently maintaining a respectable turnover frequency. Comprehensive electrochemical and computational studies here confirm the positive influence of the [(MeO)2Ph]2bpy ligand framework on electrocatalytic CO2 reduction and its dependence upon the concentration and pK a of the external Brønsted acid proton source (water, methanol, trifluoroethanol, and phenol) that is required for this class of manganese catalyst. Linear sweep voltammetry studies show that both phenol and trifluoroethanol as proton sources exhibit the largest protonation-first catalytic currents in combination with {fac-MnI([(MeO)2Ph]2bpy)­(CO)3(CH3CN)}­(OTf), saving up to 0.55 V in overpotential with respect to the thermodynamically demanding reduction-first pathway, while bulk electrolysis studies confirm a high product selectivity for CO formation. To gain further insight into catalyst activation, time-resolved infrared (TRIR) spectroscopy combined with pulse-radiolysis (PR-TRIR), infrared spectroelectrochemistry, and density functional theory calculations were used to establish the v(CO) stretching frequencies and energetics of key redox intermediates relevant to catalyst activation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jacs.6b08776</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2397-9162</orcidid><orcidid>https://orcid.org/0000-0001-8349-9158</orcidid><orcidid>https://orcid.org/0000000323979162</orcidid><orcidid>https://orcid.org/0000000183499158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-02, Vol.139 (7), p.2604-2618
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1345736
source ACS Publications
subjects CO2 reduction
electrocatalysis
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
manganese
pulse radiolysis
title Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20on%20the%20Protonation-First%20Pathway%20for%20Electrocatalytic%20CO2%20Reduction%20by%20Manganese%20Bipyridyl%20Tricarbonyl%20Complexes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Ngo,%20Ken%20T&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2017-02-22&rft.volume=139&rft.issue=7&rft.spage=2604&rft.epage=2618&rft.pages=2604-2618&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b08776&rft_dat=%3Cproquest_osti_%3E1861857111%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861857111&rft_id=info:pmid/&rfr_iscdi=true