Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes

Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2016-06, Vol.289 (C), p.118-124
Hauptverfasser: Pesko, Danielle M., Jung, Yukyung, Hasan, Alexandra L., Webb, Michael A., Coates, Geoffrey W., Miller, Thomas F., Balsara, Nitash P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue C
container_start_page 118
container_title Solid state ionics
container_volume 289
creator Pesko, Danielle M.
Jung, Yukyung
Hasan, Alexandra L.
Webb, Michael A.
Coates, Geoffrey W.
Miller, Thomas F.
Balsara, Nitash P.
description Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes. •Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure.
doi_str_mv 10.1016/j.ssi.2016.02.020
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1342603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273815300837</els_id><sourcerecordid>1825478997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAVPXrpO0m3T4kmW9QMWvOg5dNMJZmmbNUkX9t87dT0LA8nMvPd48xi7FbAQIMqH3SJGt5D0XYCkgjM2E5WSmSqr-pzNaKEyqfLqkl3FuAOAMq_KGdNra9Ek7i3v_eB7DDymMJo0BuR-4M4PznDjh5Zm7uDSkbuBNzweY8K-SbSM-Evf--6INAwcO1IM1CaM1-zCNl3Em793zj6f1x-r12zz_vK2etpkpgCVMiEKhNLItoCtkQVAvaylKOi0vLV1YbeqkbJqZVtCa0FIUW2lRFFvl7mxpVL5nN2ddH1MTkfjEpovsj2QFS3ypSwhJ9D9CbQP_nsks7p30WDXNQP6MWpRyWKpqrqe9MQJaoKPMaDV--D6Jhy1AD0lrneaEtdT4hokFRDn8cRBOvTgMEw-cDDYujDZaL37h_0DeAWJOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825478997</pqid></control><display><type>article</type><title>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</title><source>Elsevier ScienceDirect Journals</source><creator>Pesko, Danielle M. ; Jung, Yukyung ; Hasan, Alexandra L. ; Webb, Michael A. ; Coates, Geoffrey W. ; Miller, Thomas F. ; Balsara, Nitash P.</creator><creatorcontrib>Pesko, Danielle M. ; Jung, Yukyung ; Hasan, Alexandra L. ; Webb, Michael A. ; Coates, Geoffrey W. ; Miller, Thomas F. ; Balsara, Nitash P.</creatorcontrib><description>Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes. •Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2016.02.020</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Electrolytes ; Ion transport ; Ionic conductivity ; Lithium batteries ; Mathematical analysis ; Molecular structure ; Monomer structure ; Monomers ; PEO ; Polyester ; Polyester resins ; Polymer electrolyte</subject><ispartof>Solid state ionics, 2016-06, Vol.289 (C), p.118-124</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</citedby><cites>FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273815300837$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1342603$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pesko, Danielle M.</creatorcontrib><creatorcontrib>Jung, Yukyung</creatorcontrib><creatorcontrib>Hasan, Alexandra L.</creatorcontrib><creatorcontrib>Webb, Michael A.</creatorcontrib><creatorcontrib>Coates, Geoffrey W.</creatorcontrib><creatorcontrib>Miller, Thomas F.</creatorcontrib><creatorcontrib>Balsara, Nitash P.</creatorcontrib><title>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</title><title>Solid state ionics</title><description>Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes. •Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure.</description><subject>Electrolytes</subject><subject>Ion transport</subject><subject>Ionic conductivity</subject><subject>Lithium batteries</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Monomer structure</subject><subject>Monomers</subject><subject>PEO</subject><subject>Polyester</subject><subject>Polyester resins</subject><subject>Polymer electrolyte</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAVPXrpO0m3T4kmW9QMWvOg5dNMJZmmbNUkX9t87dT0LA8nMvPd48xi7FbAQIMqH3SJGt5D0XYCkgjM2E5WSmSqr-pzNaKEyqfLqkl3FuAOAMq_KGdNra9Ek7i3v_eB7DDymMJo0BuR-4M4PznDjh5Zm7uDSkbuBNzweY8K-SbSM-Evf--6INAwcO1IM1CaM1-zCNl3Em793zj6f1x-r12zz_vK2etpkpgCVMiEKhNLItoCtkQVAvaylKOi0vLV1YbeqkbJqZVtCa0FIUW2lRFFvl7mxpVL5nN2ddH1MTkfjEpovsj2QFS3ypSwhJ9D9CbQP_nsks7p30WDXNQP6MWpRyWKpqrqe9MQJaoKPMaDV--D6Jhy1AD0lrneaEtdT4hokFRDn8cRBOvTgMEw-cDDYujDZaL37h_0DeAWJOw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Pesko, Danielle M.</creator><creator>Jung, Yukyung</creator><creator>Hasan, Alexandra L.</creator><creator>Webb, Michael A.</creator><creator>Coates, Geoffrey W.</creator><creator>Miller, Thomas F.</creator><creator>Balsara, Nitash P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160601</creationdate><title>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</title><author>Pesko, Danielle M. ; Jung, Yukyung ; Hasan, Alexandra L. ; Webb, Michael A. ; Coates, Geoffrey W. ; Miller, Thomas F. ; Balsara, Nitash P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Electrolytes</topic><topic>Ion transport</topic><topic>Ionic conductivity</topic><topic>Lithium batteries</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Monomer structure</topic><topic>Monomers</topic><topic>PEO</topic><topic>Polyester</topic><topic>Polyester resins</topic><topic>Polymer electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesko, Danielle M.</creatorcontrib><creatorcontrib>Jung, Yukyung</creatorcontrib><creatorcontrib>Hasan, Alexandra L.</creatorcontrib><creatorcontrib>Webb, Michael A.</creatorcontrib><creatorcontrib>Coates, Geoffrey W.</creatorcontrib><creatorcontrib>Miller, Thomas F.</creatorcontrib><creatorcontrib>Balsara, Nitash P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesko, Danielle M.</au><au>Jung, Yukyung</au><au>Hasan, Alexandra L.</au><au>Webb, Michael A.</au><au>Coates, Geoffrey W.</au><au>Miller, Thomas F.</au><au>Balsara, Nitash P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</atitle><jtitle>Solid state ionics</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>289</volume><issue>C</issue><spage>118</spage><epage>124</epage><pages>118-124</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes. •Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2016.02.020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2016-06, Vol.289 (C), p.118-124
issn 0167-2738
1872-7689
language eng
recordid cdi_osti_scitechconnect_1342603
source Elsevier ScienceDirect Journals
subjects Electrolytes
Ion transport
Ionic conductivity
Lithium batteries
Mathematical analysis
Molecular structure
Monomer structure
Monomers
PEO
Polyester
Polyester resins
Polymer electrolyte
title Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20monomer%20structure%20on%20ionic%20conductivity%20in%20a%20systematic%20set%20of%20polyester%20electrolytes&rft.jtitle=Solid%20state%20ionics&rft.au=Pesko,%20Danielle%20M.&rft.date=2016-06-01&rft.volume=289&rft.issue=C&rft.spage=118&rft.epage=124&rft.pages=118-124&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2016.02.020&rft_dat=%3Cproquest_osti_%3E1825478997%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825478997&rft_id=info:pmid/&rft_els_id=S0167273815300837&rfr_iscdi=true