Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes
Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: i...
Gespeichert in:
Veröffentlicht in: | Solid state ionics 2016-06, Vol.289 (C), p.118-124 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | C |
container_start_page | 118 |
container_title | Solid state ionics |
container_volume | 289 |
creator | Pesko, Danielle M. Jung, Yukyung Hasan, Alexandra L. Webb, Michael A. Coates, Geoffrey W. Miller, Thomas F. Balsara, Nitash P. |
description | Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes.
•Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure. |
doi_str_mv | 10.1016/j.ssi.2016.02.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1342603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273815300837</els_id><sourcerecordid>1825478997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAVPXrpO0m3T4kmW9QMWvOg5dNMJZmmbNUkX9t87dT0LA8nMvPd48xi7FbAQIMqH3SJGt5D0XYCkgjM2E5WSmSqr-pzNaKEyqfLqkl3FuAOAMq_KGdNra9Ek7i3v_eB7DDymMJo0BuR-4M4PznDjh5Zm7uDSkbuBNzweY8K-SbSM-Evf--6INAwcO1IM1CaM1-zCNl3Em793zj6f1x-r12zz_vK2etpkpgCVMiEKhNLItoCtkQVAvaylKOi0vLV1YbeqkbJqZVtCa0FIUW2lRFFvl7mxpVL5nN2ddH1MTkfjEpovsj2QFS3ypSwhJ9D9CbQP_nsks7p30WDXNQP6MWpRyWKpqrqe9MQJaoKPMaDV--D6Jhy1AD0lrneaEtdT4hokFRDn8cRBOvTgMEw-cDDYujDZaL37h_0DeAWJOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825478997</pqid></control><display><type>article</type><title>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</title><source>Elsevier ScienceDirect Journals</source><creator>Pesko, Danielle M. ; Jung, Yukyung ; Hasan, Alexandra L. ; Webb, Michael A. ; Coates, Geoffrey W. ; Miller, Thomas F. ; Balsara, Nitash P.</creator><creatorcontrib>Pesko, Danielle M. ; Jung, Yukyung ; Hasan, Alexandra L. ; Webb, Michael A. ; Coates, Geoffrey W. ; Miller, Thomas F. ; Balsara, Nitash P.</creatorcontrib><description>Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes.
•Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2016.02.020</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Electrolytes ; Ion transport ; Ionic conductivity ; Lithium batteries ; Mathematical analysis ; Molecular structure ; Monomer structure ; Monomers ; PEO ; Polyester ; Polyester resins ; Polymer electrolyte</subject><ispartof>Solid state ionics, 2016-06, Vol.289 (C), p.118-124</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</citedby><cites>FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273815300837$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1342603$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pesko, Danielle M.</creatorcontrib><creatorcontrib>Jung, Yukyung</creatorcontrib><creatorcontrib>Hasan, Alexandra L.</creatorcontrib><creatorcontrib>Webb, Michael A.</creatorcontrib><creatorcontrib>Coates, Geoffrey W.</creatorcontrib><creatorcontrib>Miller, Thomas F.</creatorcontrib><creatorcontrib>Balsara, Nitash P.</creatorcontrib><title>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</title><title>Solid state ionics</title><description>Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes.
•Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure.</description><subject>Electrolytes</subject><subject>Ion transport</subject><subject>Ionic conductivity</subject><subject>Lithium batteries</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Monomer structure</subject><subject>Monomers</subject><subject>PEO</subject><subject>Polyester</subject><subject>Polyester resins</subject><subject>Polymer electrolyte</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAVPXrpO0m3T4kmW9QMWvOg5dNMJZmmbNUkX9t87dT0LA8nMvPd48xi7FbAQIMqH3SJGt5D0XYCkgjM2E5WSmSqr-pzNaKEyqfLqkl3FuAOAMq_KGdNra9Ek7i3v_eB7DDymMJo0BuR-4M4PznDjh5Zm7uDSkbuBNzweY8K-SbSM-Evf--6INAwcO1IM1CaM1-zCNl3Em793zj6f1x-r12zz_vK2etpkpgCVMiEKhNLItoCtkQVAvaylKOi0vLV1YbeqkbJqZVtCa0FIUW2lRFFvl7mxpVL5nN2ddH1MTkfjEpovsj2QFS3ypSwhJ9D9CbQP_nsks7p30WDXNQP6MWpRyWKpqrqe9MQJaoKPMaDV--D6Jhy1AD0lrneaEtdT4hokFRDn8cRBOvTgMEw-cDDYujDZaL37h_0DeAWJOw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Pesko, Danielle M.</creator><creator>Jung, Yukyung</creator><creator>Hasan, Alexandra L.</creator><creator>Webb, Michael A.</creator><creator>Coates, Geoffrey W.</creator><creator>Miller, Thomas F.</creator><creator>Balsara, Nitash P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160601</creationdate><title>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</title><author>Pesko, Danielle M. ; Jung, Yukyung ; Hasan, Alexandra L. ; Webb, Michael A. ; Coates, Geoffrey W. ; Miller, Thomas F. ; Balsara, Nitash P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-115e06c2d50bc25009492151013df95fb7a228d2d60df01218b22e19b43cf6773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Electrolytes</topic><topic>Ion transport</topic><topic>Ionic conductivity</topic><topic>Lithium batteries</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Monomer structure</topic><topic>Monomers</topic><topic>PEO</topic><topic>Polyester</topic><topic>Polyester resins</topic><topic>Polymer electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesko, Danielle M.</creatorcontrib><creatorcontrib>Jung, Yukyung</creatorcontrib><creatorcontrib>Hasan, Alexandra L.</creatorcontrib><creatorcontrib>Webb, Michael A.</creatorcontrib><creatorcontrib>Coates, Geoffrey W.</creatorcontrib><creatorcontrib>Miller, Thomas F.</creatorcontrib><creatorcontrib>Balsara, Nitash P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesko, Danielle M.</au><au>Jung, Yukyung</au><au>Hasan, Alexandra L.</au><au>Webb, Michael A.</au><au>Coates, Geoffrey W.</au><au>Miller, Thomas F.</au><au>Balsara, Nitash P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes</atitle><jtitle>Solid state ionics</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>289</volume><issue>C</issue><spage>118</spage><epage>124</epage><pages>118-124</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Polymer electrolytes may enable the next generation of lithium ion batteries with improved energy density and safety. Predicting the performance of new ion-conducting polymers is difficult because ion transport depends on a variety of interconnected factors which are affected by monomer structure: interactions between the polymer chains and the salt, extent of dissociation of the salt, and dynamics in the vicinity of ions. In an attempt to unravel these factors, we have conducted a systematic study of the dependence of monomer structure on ionic conductivity, σ, and glass transition temperature, Tg, using electrolytes composed of aliphatic polyesters and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. The properties of these electrolytes were compared to those of poly(ethylene oxide) (PEO), a standard polymer electrolyte for lithium batteries. We define a new measure of salt concentration, ρ, the number of lithium ions per unit length of the monomer backbone. This measure enables collapse of the dependence of both the σ and Tg on salt concentration for all polymers (polyesters and PEO). Analysis based on the Vogel–Tammann–Fulcher (VTF) equation reveals the effect of different oxygen atoms on ion transport. The VTF fits were used to factor out the effect of segmental motion in order to clarify the relationship between molecular structure and ionic conductivity. While the conductivity of the newly-developed polyesters was lower than that of PEO, our study provides new insight into the relationship between ion transport and monomer structure in polymer electrolytes.
•Electrolytes prepared using a systematic set of aliphatic polyesters and PEO/LiTFSI•Conductivity and glass transition are reported at varying salt concentration.•A new measure of salt concentration provides insight on polymer-salt interactions.•VTF fits are used to factor out the effect of segmental motion on conductivity.•Reduced conductivity elucidates the effect of changing monomer structure.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2016.02.020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2738 |
ispartof | Solid state ionics, 2016-06, Vol.289 (C), p.118-124 |
issn | 0167-2738 1872-7689 |
language | eng |
recordid | cdi_osti_scitechconnect_1342603 |
source | Elsevier ScienceDirect Journals |
subjects | Electrolytes Ion transport Ionic conductivity Lithium batteries Mathematical analysis Molecular structure Monomer structure Monomers PEO Polyester Polyester resins Polymer electrolyte |
title | Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20monomer%20structure%20on%20ionic%20conductivity%20in%20a%20systematic%20set%20of%20polyester%20electrolytes&rft.jtitle=Solid%20state%20ionics&rft.au=Pesko,%20Danielle%20M.&rft.date=2016-06-01&rft.volume=289&rft.issue=C&rft.spage=118&rft.epage=124&rft.pages=118-124&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2016.02.020&rft_dat=%3Cproquest_osti_%3E1825478997%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825478997&rft_id=info:pmid/&rft_els_id=S0167273815300837&rfr_iscdi=true |