Chemical strain-dependent two-dimensional transport at RAlO3/SrTiO3 interfaces (R=La,Nd,Sm,and Gd)

Perovskite RAlO3 (R=La,Nd,Sm,and Gd) films have been deposited epitaxially on (001) TiO2-terminated SrTiO3 substrates. It is observed that the two-dimensional transport characteristics at the RAlO3/SrTiO3 interfaces are very sensitive to the species of rare-earth element, that is to chemical strain....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-12, Vol.94 (24)
Hauptverfasser: Li, Chen, Shen, Xuan, Yang, Yurong, Bai, Yuhang, Yuan, Zhoushen, Su, Dong, Li, Aidong, Zhang, Shantao, Wang, Peng, Bellaiche, Laurent, Wu, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Physical review. B
container_volume 94
creator Li, Chen
Shen, Xuan
Yang, Yurong
Bai, Yuhang
Yuan, Zhoushen
Su, Dong
Li, Aidong
Zhang, Shantao
Wang, Peng
Bellaiche, Laurent
Wu, Di
description Perovskite RAlO3 (R=La,Nd,Sm,and Gd) films have been deposited epitaxially on (001) TiO2-terminated SrTiO3 substrates. It is observed that the two-dimensional transport characteristics at the RAlO3/SrTiO3 interfaces are very sensitive to the species of rare-earth element, that is to chemical strain. Although electron energy loss spectroscopy measurements show that electron transfer occurs in all the four polar/nonpolar heterostructures, the amount of electrons transferred across SmAlO3/SrTiO3 and GdAlO3/SrTiO3 interfaces are much less than those across LaAlO3/SrTiO3 and NdAlO3/SrTiO3 interfaces. First-principles calculations reveal the competition between ionic polarization and electronic polarization in the polar layers in compensating the build-in polarization due to the polar discontinuity at the interface. In particular, a large ionic polarization is found in SmAlO3/SrTiO3 and GdAlO3/SrTiO3 systems (which experience the largest tensile epitaxial strain), hence reducing the amount of electrons transferred.
doi_str_mv 10.1103/PhysRevB.94.241116
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1341674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126925055</sourcerecordid><originalsourceid>FETCH-LOGICAL-o210t-599e72ba365ef3144ae6bd64ddb22be8709928e6ecd9c40696d92ca4e0b7944c3</originalsourceid><addsrcrecordid>eNo9j01LAzEYhIMoWGr_gKdFLwrdNl-b7XvwUItWoVhp63nJJm9pSpvUTar4712oeJqBeRhmCLlmdMAYFcP3zU9c4NfjAOSAS8aYOiMdLhXkAArO_31BL0kvxi2llCkKJYUOqScb3Dujd1lMjXY-t3hAb9GnLH2H3Lo9-uiCb4E29_EQmpTplC3Gu7kYLpuVm4vM-YTNWhuM2d3iYab7b7a_3Pe1t9nU3l-Ri7XeRez9aZd8PD-tJi_5bD59nYxneeCMprwAwJLXWqgC14JJqVHVVklra85rHLVzgY9QobFgJFWgLHCjJdK6BCmN6JKbU2-IyVXRuIRmY4L3aFLFhGSqlC10e4IOTfg8YkzVNhyb9l6sOOMKeEGLQvwCGyFkQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126925055</pqid></control><display><type>article</type><title>Chemical strain-dependent two-dimensional transport at RAlO3/SrTiO3 interfaces (R=La,Nd,Sm,and Gd)</title><source>American Physical Society Journals</source><creator>Li, Chen ; Shen, Xuan ; Yang, Yurong ; Bai, Yuhang ; Yuan, Zhoushen ; Su, Dong ; Li, Aidong ; Zhang, Shantao ; Wang, Peng ; Bellaiche, Laurent ; Wu, Di</creator><creatorcontrib>Li, Chen ; Shen, Xuan ; Yang, Yurong ; Bai, Yuhang ; Yuan, Zhoushen ; Su, Dong ; Li, Aidong ; Zhang, Shantao ; Wang, Peng ; Bellaiche, Laurent ; Wu, Di ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Univ. of Arkansas, Fayetteville, AR (United States) ; Nanjing Univ. (China)</creatorcontrib><description>Perovskite RAlO3 (R=La,Nd,Sm,and Gd) films have been deposited epitaxially on (001) TiO2-terminated SrTiO3 substrates. It is observed that the two-dimensional transport characteristics at the RAlO3/SrTiO3 interfaces are very sensitive to the species of rare-earth element, that is to chemical strain. Although electron energy loss spectroscopy measurements show that electron transfer occurs in all the four polar/nonpolar heterostructures, the amount of electrons transferred across SmAlO3/SrTiO3 and GdAlO3/SrTiO3 interfaces are much less than those across LaAlO3/SrTiO3 and NdAlO3/SrTiO3 interfaces. First-principles calculations reveal the competition between ionic polarization and electronic polarization in the polar layers in compensating the build-in polarization due to the polar discontinuity at the interface. In particular, a large ionic polarization is found in SmAlO3/SrTiO3 and GdAlO3/SrTiO3 systems (which experience the largest tensile epitaxial strain), hence reducing the amount of electrons transferred.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.241116</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Aluminates ; Center for Functional Nanomaterials ; dimensional transport ; Electron energy loss spectroscopy ; Electron transfer ; Energy dissipation ; First principles ; Gadolinium ; Gadolinium compounds ; Heterostructures ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lanthanum ; Organic chemistry ; Perovskite ; Perovskites ; polar discontinuity ; Polarization ; Rare earth elements ; Strontium titanates ; Substrates ; Titanium dioxide ; Transport</subject><ispartof>Physical review. B, 2016-12, Vol.94 (24)</ispartof><rights>Copyright American Physical Society Dec 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1341674$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Shen, Xuan</creatorcontrib><creatorcontrib>Yang, Yurong</creatorcontrib><creatorcontrib>Bai, Yuhang</creatorcontrib><creatorcontrib>Yuan, Zhoushen</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Li, Aidong</creatorcontrib><creatorcontrib>Zhang, Shantao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Bellaiche, Laurent</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Arkansas, Fayetteville, AR (United States)</creatorcontrib><creatorcontrib>Nanjing Univ. (China)</creatorcontrib><title>Chemical strain-dependent two-dimensional transport at RAlO3/SrTiO3 interfaces (R=La,Nd,Sm,and Gd)</title><title>Physical review. B</title><description>Perovskite RAlO3 (R=La,Nd,Sm,and Gd) films have been deposited epitaxially on (001) TiO2-terminated SrTiO3 substrates. It is observed that the two-dimensional transport characteristics at the RAlO3/SrTiO3 interfaces are very sensitive to the species of rare-earth element, that is to chemical strain. Although electron energy loss spectroscopy measurements show that electron transfer occurs in all the four polar/nonpolar heterostructures, the amount of electrons transferred across SmAlO3/SrTiO3 and GdAlO3/SrTiO3 interfaces are much less than those across LaAlO3/SrTiO3 and NdAlO3/SrTiO3 interfaces. First-principles calculations reveal the competition between ionic polarization and electronic polarization in the polar layers in compensating the build-in polarization due to the polar discontinuity at the interface. In particular, a large ionic polarization is found in SmAlO3/SrTiO3 and GdAlO3/SrTiO3 systems (which experience the largest tensile epitaxial strain), hence reducing the amount of electrons transferred.</description><subject>Aluminates</subject><subject>Center for Functional Nanomaterials</subject><subject>dimensional transport</subject><subject>Electron energy loss spectroscopy</subject><subject>Electron transfer</subject><subject>Energy dissipation</subject><subject>First principles</subject><subject>Gadolinium</subject><subject>Gadolinium compounds</subject><subject>Heterostructures</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lanthanum</subject><subject>Organic chemistry</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>polar discontinuity</subject><subject>Polarization</subject><subject>Rare earth elements</subject><subject>Strontium titanates</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>Transport</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEYhIMoWGr_gKdFLwrdNl-b7XvwUItWoVhp63nJJm9pSpvUTar4712oeJqBeRhmCLlmdMAYFcP3zU9c4NfjAOSAS8aYOiMdLhXkAArO_31BL0kvxi2llCkKJYUOqScb3Dujd1lMjXY-t3hAb9GnLH2H3Lo9-uiCb4E29_EQmpTplC3Gu7kYLpuVm4vM-YTNWhuM2d3iYab7b7a_3Pe1t9nU3l-Ri7XeRez9aZd8PD-tJi_5bD59nYxneeCMprwAwJLXWqgC14JJqVHVVklra85rHLVzgY9QobFgJFWgLHCjJdK6BCmN6JKbU2-IyVXRuIRmY4L3aFLFhGSqlC10e4IOTfg8YkzVNhyb9l6sOOMKeEGLQvwCGyFkQA</recordid><startdate>20161227</startdate><enddate>20161227</enddate><creator>Li, Chen</creator><creator>Shen, Xuan</creator><creator>Yang, Yurong</creator><creator>Bai, Yuhang</creator><creator>Yuan, Zhoushen</creator><creator>Su, Dong</creator><creator>Li, Aidong</creator><creator>Zhang, Shantao</creator><creator>Wang, Peng</creator><creator>Bellaiche, Laurent</creator><creator>Wu, Di</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161227</creationdate><title>Chemical strain-dependent two-dimensional transport at RAlO3/SrTiO3 interfaces (R=La,Nd,Sm,and Gd)</title><author>Li, Chen ; Shen, Xuan ; Yang, Yurong ; Bai, Yuhang ; Yuan, Zhoushen ; Su, Dong ; Li, Aidong ; Zhang, Shantao ; Wang, Peng ; Bellaiche, Laurent ; Wu, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o210t-599e72ba365ef3144ae6bd64ddb22be8709928e6ecd9c40696d92ca4e0b7944c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminates</topic><topic>Center for Functional Nanomaterials</topic><topic>dimensional transport</topic><topic>Electron energy loss spectroscopy</topic><topic>Electron transfer</topic><topic>Energy dissipation</topic><topic>First principles</topic><topic>Gadolinium</topic><topic>Gadolinium compounds</topic><topic>Heterostructures</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lanthanum</topic><topic>Organic chemistry</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>polar discontinuity</topic><topic>Polarization</topic><topic>Rare earth elements</topic><topic>Strontium titanates</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Shen, Xuan</creatorcontrib><creatorcontrib>Yang, Yurong</creatorcontrib><creatorcontrib>Bai, Yuhang</creatorcontrib><creatorcontrib>Yuan, Zhoushen</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Li, Aidong</creatorcontrib><creatorcontrib>Zhang, Shantao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Bellaiche, Laurent</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Arkansas, Fayetteville, AR (United States)</creatorcontrib><creatorcontrib>Nanjing Univ. (China)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chen</au><au>Shen, Xuan</au><au>Yang, Yurong</au><au>Bai, Yuhang</au><au>Yuan, Zhoushen</au><au>Su, Dong</au><au>Li, Aidong</au><au>Zhang, Shantao</au><au>Wang, Peng</au><au>Bellaiche, Laurent</au><au>Wu, Di</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Univ. of Arkansas, Fayetteville, AR (United States)</aucorp><aucorp>Nanjing Univ. (China)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical strain-dependent two-dimensional transport at RAlO3/SrTiO3 interfaces (R=La,Nd,Sm,and Gd)</atitle><jtitle>Physical review. B</jtitle><date>2016-12-27</date><risdate>2016</risdate><volume>94</volume><issue>24</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Perovskite RAlO3 (R=La,Nd,Sm,and Gd) films have been deposited epitaxially on (001) TiO2-terminated SrTiO3 substrates. It is observed that the two-dimensional transport characteristics at the RAlO3/SrTiO3 interfaces are very sensitive to the species of rare-earth element, that is to chemical strain. Although electron energy loss spectroscopy measurements show that electron transfer occurs in all the four polar/nonpolar heterostructures, the amount of electrons transferred across SmAlO3/SrTiO3 and GdAlO3/SrTiO3 interfaces are much less than those across LaAlO3/SrTiO3 and NdAlO3/SrTiO3 interfaces. First-principles calculations reveal the competition between ionic polarization and electronic polarization in the polar layers in compensating the build-in polarization due to the polar discontinuity at the interface. In particular, a large ionic polarization is found in SmAlO3/SrTiO3 and GdAlO3/SrTiO3 systems (which experience the largest tensile epitaxial strain), hence reducing the amount of electrons transferred.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.94.241116</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-12, Vol.94 (24)
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1341674
source American Physical Society Journals
subjects Aluminates
Center for Functional Nanomaterials
dimensional transport
Electron energy loss spectroscopy
Electron transfer
Energy dissipation
First principles
Gadolinium
Gadolinium compounds
Heterostructures
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lanthanum
Organic chemistry
Perovskite
Perovskites
polar discontinuity
Polarization
Rare earth elements
Strontium titanates
Substrates
Titanium dioxide
Transport
title Chemical strain-dependent two-dimensional transport at RAlO3/SrTiO3 interfaces (R=La,Nd,Sm,and Gd)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20strain-dependent%20two-dimensional%20transport%20at%20RAlO3/SrTiO3%20interfaces%20(R=La,Nd,Sm,and%20Gd)&rft.jtitle=Physical%20review.%20B&rft.au=Li,%20Chen&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2016-12-27&rft.volume=94&rft.issue=24&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.241116&rft_dat=%3Cproquest_osti_%3E2126925055%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126925055&rft_id=info:pmid/&rfr_iscdi=true