Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells
Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficien...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-10, Vol.8 (41), p.27720-27729 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27729 |
---|---|
container_issue | 41 |
container_start_page | 27720 |
container_title | ACS applied materials & interfaces |
container_volume | 8 |
creator | Lee, Eungje Blauwkamp, Joel Castro, Fernando C Wu, Jinsong Dravid, Vinayak P Yan, Pengfei Wang, Chongmin Kim, Soo Wolverton, Christopher Benedek, Roy Dogan, Fulya Park, Joong Sun Croy, Jason R Thackeray, Michael M |
description | Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells. |
doi_str_mv | 10.1021/acsami.6b09073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1340815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835353999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</originalsourceid><addsrcrecordid>eNp1kMtq3DAUhkVJaC7NtstisgoFT4-utpZhmDQDQ0JIm62QJblRalsTyYb0EfIgfbE8SRU8ya6chY7g-38OH0KfMSwwEPxNm6R7vxANSKjoB3SIJWNlTTjZe98ZO0BHKT0ACEqAf0QHpKoAgIhDdLN62nYh-uFXsfHjvZ_6chka3Y3llTe_XVdcP3nritutH_Jn1TkzxmBdKtoQi5fnv3TBi7scLddhKJau69IntN_qLrmT3XuMfl6sfiwvy8319_XyfFNqKquxJC2zxHJBqAEqgDagieCVZA3wxsrWMqvruqUVsQwMZ60QVnJwzmFBW-voMTqde0MavUrGj87cmzAM-USFKYMa8wydzdA2hsfJpVH1Ppl8ph5cmJLCNeV5pJQZXcyoiSGl6Fq1jb7X8Y_CoF5dq9m12rnOgS-77qnpnX3H3-Rm4OsM5KB6CFMcso__tf0DBGaHww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835353999</pqid></control><display><type>article</type><title>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</title><source>ACS Publications</source><creator>Lee, Eungje ; Blauwkamp, Joel ; Castro, Fernando C ; Wu, Jinsong ; Dravid, Vinayak P ; Yan, Pengfei ; Wang, Chongmin ; Kim, Soo ; Wolverton, Christopher ; Benedek, Roy ; Dogan, Fulya ; Park, Joong Sun ; Croy, Jason R ; Thackeray, Michael M</creator><creatorcontrib>Lee, Eungje ; Blauwkamp, Joel ; Castro, Fernando C ; Wu, Jinsong ; Dravid, Vinayak P ; Yan, Pengfei ; Wang, Chongmin ; Kim, Soo ; Wolverton, Christopher ; Benedek, Roy ; Dogan, Fulya ; Park, Joong Sun ; Croy, Jason R ; Thackeray, Michael M ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL) ; Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><description>Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b09073</identifier><identifier>PMID: 27700026</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Environmental Molecular Sciences Laboratory ; lithium-cobalt-nickel oxide ; Lithium-ion battery ; spinel ; stabilizer ; structure</subject><ispartof>ACS applied materials & interfaces, 2016-10, Vol.8 (41), p.27720-27729</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</citedby><cites>FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b09073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b09073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27700026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1340815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Eungje</creatorcontrib><creatorcontrib>Blauwkamp, Joel</creatorcontrib><creatorcontrib>Castro, Fernando C</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Kim, Soo</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Benedek, Roy</creatorcontrib><creatorcontrib>Dogan, Fulya</creatorcontrib><creatorcontrib>Park, Joong Sun</creatorcontrib><creatorcontrib>Croy, Jason R</creatorcontrib><creatorcontrib>Thackeray, Michael M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><title>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.</description><subject>Environmental Molecular Sciences Laboratory</subject><subject>lithium-cobalt-nickel oxide</subject><subject>Lithium-ion battery</subject><subject>spinel</subject><subject>stabilizer</subject><subject>structure</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtq3DAUhkVJaC7NtstisgoFT4-utpZhmDQDQ0JIm62QJblRalsTyYb0EfIgfbE8SRU8ya6chY7g-38OH0KfMSwwEPxNm6R7vxANSKjoB3SIJWNlTTjZe98ZO0BHKT0ACEqAf0QHpKoAgIhDdLN62nYh-uFXsfHjvZ_6chka3Y3llTe_XVdcP3nritutH_Jn1TkzxmBdKtoQi5fnv3TBi7scLddhKJau69IntN_qLrmT3XuMfl6sfiwvy8319_XyfFNqKquxJC2zxHJBqAEqgDagieCVZA3wxsrWMqvruqUVsQwMZ60QVnJwzmFBW-voMTqde0MavUrGj87cmzAM-USFKYMa8wydzdA2hsfJpVH1Ppl8ph5cmJLCNeV5pJQZXcyoiSGl6Fq1jb7X8Y_CoF5dq9m12rnOgS-77qnpnX3H3-Rm4OsM5KB6CFMcso__tf0DBGaHww</recordid><startdate>20161019</startdate><enddate>20161019</enddate><creator>Lee, Eungje</creator><creator>Blauwkamp, Joel</creator><creator>Castro, Fernando C</creator><creator>Wu, Jinsong</creator><creator>Dravid, Vinayak P</creator><creator>Yan, Pengfei</creator><creator>Wang, Chongmin</creator><creator>Kim, Soo</creator><creator>Wolverton, Christopher</creator><creator>Benedek, Roy</creator><creator>Dogan, Fulya</creator><creator>Park, Joong Sun</creator><creator>Croy, Jason R</creator><creator>Thackeray, Michael M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20161019</creationdate><title>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</title><author>Lee, Eungje ; Blauwkamp, Joel ; Castro, Fernando C ; Wu, Jinsong ; Dravid, Vinayak P ; Yan, Pengfei ; Wang, Chongmin ; Kim, Soo ; Wolverton, Christopher ; Benedek, Roy ; Dogan, Fulya ; Park, Joong Sun ; Croy, Jason R ; Thackeray, Michael M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Environmental Molecular Sciences Laboratory</topic><topic>lithium-cobalt-nickel oxide</topic><topic>Lithium-ion battery</topic><topic>spinel</topic><topic>stabilizer</topic><topic>structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eungje</creatorcontrib><creatorcontrib>Blauwkamp, Joel</creatorcontrib><creatorcontrib>Castro, Fernando C</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Kim, Soo</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Benedek, Roy</creatorcontrib><creatorcontrib>Dogan, Fulya</creatorcontrib><creatorcontrib>Park, Joong Sun</creatorcontrib><creatorcontrib>Croy, Jason R</creatorcontrib><creatorcontrib>Thackeray, Michael M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eungje</au><au>Blauwkamp, Joel</au><au>Castro, Fernando C</au><au>Wu, Jinsong</au><au>Dravid, Vinayak P</au><au>Yan, Pengfei</au><au>Wang, Chongmin</au><au>Kim, Soo</au><au>Wolverton, Christopher</au><au>Benedek, Roy</au><au>Dogan, Fulya</au><au>Park, Joong Sun</au><au>Croy, Jason R</au><au>Thackeray, Michael M</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-10-19</date><risdate>2016</risdate><volume>8</volume><issue>41</issue><spage>27720</spage><epage>27729</epage><pages>27720-27729</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27700026</pmid><doi>10.1021/acsami.6b09073</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2016-10, Vol.8 (41), p.27720-27729 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1340815 |
source | ACS Publications |
subjects | Environmental Molecular Sciences Laboratory lithium-cobalt-nickel oxide Lithium-ion battery spinel stabilizer structure |
title | Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Lithium-Cobalt-Nickel%20Oxide%20Spinel%20Electrodes%20for%20%E2%89%A53.5%20V%20Li-Ion%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Eungje&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States).%20Environmental%20Molecular%20Sciences%20Lab.%20(EMSL)&rft.date=2016-10-19&rft.volume=8&rft.issue=41&rft.spage=27720&rft.epage=27729&rft.pages=27720-27729&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b09073&rft_dat=%3Cproquest_osti_%3E1835353999%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835353999&rft_id=info:pmid/27700026&rfr_iscdi=true |