Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells

Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)­LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-10, Vol.8 (41), p.27720-27729
Hauptverfasser: Lee, Eungje, Blauwkamp, Joel, Castro, Fernando C, Wu, Jinsong, Dravid, Vinayak P, Yan, Pengfei, Wang, Chongmin, Kim, Soo, Wolverton, Christopher, Benedek, Roy, Dogan, Fulya, Park, Joong Sun, Croy, Jason R, Thackeray, Michael M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27729
container_issue 41
container_start_page 27720
container_title ACS applied materials & interfaces
container_volume 8
creator Lee, Eungje
Blauwkamp, Joel
Castro, Fernando C
Wu, Jinsong
Dravid, Vinayak P
Yan, Pengfei
Wang, Chongmin
Kim, Soo
Wolverton, Christopher
Benedek, Roy
Dogan, Fulya
Park, Joong Sun
Croy, Jason R
Thackeray, Michael M
description Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)­LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.
doi_str_mv 10.1021/acsami.6b09073
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1340815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835353999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</originalsourceid><addsrcrecordid>eNp1kMtq3DAUhkVJaC7NtstisgoFT4-utpZhmDQDQ0JIm62QJblRalsTyYb0EfIgfbE8SRU8ya6chY7g-38OH0KfMSwwEPxNm6R7vxANSKjoB3SIJWNlTTjZe98ZO0BHKT0ACEqAf0QHpKoAgIhDdLN62nYh-uFXsfHjvZ_6chka3Y3llTe_XVdcP3nritutH_Jn1TkzxmBdKtoQi5fnv3TBi7scLddhKJau69IntN_qLrmT3XuMfl6sfiwvy8319_XyfFNqKquxJC2zxHJBqAEqgDagieCVZA3wxsrWMqvruqUVsQwMZ60QVnJwzmFBW-voMTqde0MavUrGj87cmzAM-USFKYMa8wydzdA2hsfJpVH1Ppl8ph5cmJLCNeV5pJQZXcyoiSGl6Fq1jb7X8Y_CoF5dq9m12rnOgS-77qnpnX3H3-Rm4OsM5KB6CFMcso__tf0DBGaHww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835353999</pqid></control><display><type>article</type><title>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</title><source>ACS Publications</source><creator>Lee, Eungje ; Blauwkamp, Joel ; Castro, Fernando C ; Wu, Jinsong ; Dravid, Vinayak P ; Yan, Pengfei ; Wang, Chongmin ; Kim, Soo ; Wolverton, Christopher ; Benedek, Roy ; Dogan, Fulya ; Park, Joong Sun ; Croy, Jason R ; Thackeray, Michael M</creator><creatorcontrib>Lee, Eungje ; Blauwkamp, Joel ; Castro, Fernando C ; Wu, Jinsong ; Dravid, Vinayak P ; Yan, Pengfei ; Wang, Chongmin ; Kim, Soo ; Wolverton, Christopher ; Benedek, Roy ; Dogan, Fulya ; Park, Joong Sun ; Croy, Jason R ; Thackeray, Michael M ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL) ; Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><description>Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)­LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b09073</identifier><identifier>PMID: 27700026</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Environmental Molecular Sciences Laboratory ; lithium-cobalt-nickel oxide ; Lithium-ion battery ; spinel ; stabilizer ; structure</subject><ispartof>ACS applied materials &amp; interfaces, 2016-10, Vol.8 (41), p.27720-27729</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</citedby><cites>FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b09073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b09073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27700026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1340815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Eungje</creatorcontrib><creatorcontrib>Blauwkamp, Joel</creatorcontrib><creatorcontrib>Castro, Fernando C</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Kim, Soo</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Benedek, Roy</creatorcontrib><creatorcontrib>Dogan, Fulya</creatorcontrib><creatorcontrib>Park, Joong Sun</creatorcontrib><creatorcontrib>Croy, Jason R</creatorcontrib><creatorcontrib>Thackeray, Michael M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><title>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)­LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.</description><subject>Environmental Molecular Sciences Laboratory</subject><subject>lithium-cobalt-nickel oxide</subject><subject>Lithium-ion battery</subject><subject>spinel</subject><subject>stabilizer</subject><subject>structure</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtq3DAUhkVJaC7NtstisgoFT4-utpZhmDQDQ0JIm62QJblRalsTyYb0EfIgfbE8SRU8ya6chY7g-38OH0KfMSwwEPxNm6R7vxANSKjoB3SIJWNlTTjZe98ZO0BHKT0ACEqAf0QHpKoAgIhDdLN62nYh-uFXsfHjvZ_6chka3Y3llTe_XVdcP3nritutH_Jn1TkzxmBdKtoQi5fnv3TBi7scLddhKJau69IntN_qLrmT3XuMfl6sfiwvy8319_XyfFNqKquxJC2zxHJBqAEqgDagieCVZA3wxsrWMqvruqUVsQwMZ60QVnJwzmFBW-voMTqde0MavUrGj87cmzAM-USFKYMa8wydzdA2hsfJpVH1Ppl8ph5cmJLCNeV5pJQZXcyoiSGl6Fq1jb7X8Y_CoF5dq9m12rnOgS-77qnpnX3H3-Rm4OsM5KB6CFMcso__tf0DBGaHww</recordid><startdate>20161019</startdate><enddate>20161019</enddate><creator>Lee, Eungje</creator><creator>Blauwkamp, Joel</creator><creator>Castro, Fernando C</creator><creator>Wu, Jinsong</creator><creator>Dravid, Vinayak P</creator><creator>Yan, Pengfei</creator><creator>Wang, Chongmin</creator><creator>Kim, Soo</creator><creator>Wolverton, Christopher</creator><creator>Benedek, Roy</creator><creator>Dogan, Fulya</creator><creator>Park, Joong Sun</creator><creator>Croy, Jason R</creator><creator>Thackeray, Michael M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20161019</creationdate><title>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</title><author>Lee, Eungje ; Blauwkamp, Joel ; Castro, Fernando C ; Wu, Jinsong ; Dravid, Vinayak P ; Yan, Pengfei ; Wang, Chongmin ; Kim, Soo ; Wolverton, Christopher ; Benedek, Roy ; Dogan, Fulya ; Park, Joong Sun ; Croy, Jason R ; Thackeray, Michael M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-2f4d2d5623c03603b0a265794b05bd9fd4da88f372d40c54f66d950eee163fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Environmental Molecular Sciences Laboratory</topic><topic>lithium-cobalt-nickel oxide</topic><topic>Lithium-ion battery</topic><topic>spinel</topic><topic>stabilizer</topic><topic>structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eungje</creatorcontrib><creatorcontrib>Blauwkamp, Joel</creatorcontrib><creatorcontrib>Castro, Fernando C</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Kim, Soo</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Benedek, Roy</creatorcontrib><creatorcontrib>Dogan, Fulya</creatorcontrib><creatorcontrib>Park, Joong Sun</creatorcontrib><creatorcontrib>Croy, Jason R</creatorcontrib><creatorcontrib>Thackeray, Michael M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eungje</au><au>Blauwkamp, Joel</au><au>Castro, Fernando C</au><au>Wu, Jinsong</au><au>Dravid, Vinayak P</au><au>Yan, Pengfei</au><au>Wang, Chongmin</au><au>Kim, Soo</au><au>Wolverton, Christopher</au><au>Benedek, Roy</au><au>Dogan, Fulya</au><au>Park, Joong Sun</au><au>Croy, Jason R</au><au>Thackeray, Michael M</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-10-19</date><risdate>2016</risdate><volume>8</volume><issue>41</issue><spage>27720</spage><epage>27729</epage><pages>27720-27729</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1–x)­LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1–x Ni x O2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1–x Ni x O2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27700026</pmid><doi>10.1021/acsami.6b09073</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-10, Vol.8 (41), p.27720-27729
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1340815
source ACS Publications
subjects Environmental Molecular Sciences Laboratory
lithium-cobalt-nickel oxide
Lithium-ion battery
spinel
stabilizer
structure
title Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Lithium-Cobalt-Nickel%20Oxide%20Spinel%20Electrodes%20for%20%E2%89%A53.5%20V%20Li-Ion%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Eungje&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States).%20Environmental%20Molecular%20Sciences%20Lab.%20(EMSL)&rft.date=2016-10-19&rft.volume=8&rft.issue=41&rft.spage=27720&rft.epage=27729&rft.pages=27720-27729&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b09073&rft_dat=%3Cproquest_osti_%3E1835353999%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835353999&rft_id=info:pmid/27700026&rfr_iscdi=true