Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite

Treatment and immobilization of technetium-99 (99Tc) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2016-12, Vol.51 (2)
Hauptverfasser: Pierce, Eric M., Lilova, Kristina, Missimer, David M., Lukens, Wayne W., Wu, Lili, Fitts, Jeffrey P., Rawn, Claudia, Huq, Ashfia, Leonard, Donovan N., Eskelsen, Jeremy R., Jantzen, Carol M., Navrotsky, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Environmental science & technology
container_volume 51
creator Pierce, Eric M.
Lilova, Kristina
Missimer, David M.
Lukens, Wayne W.
Wu, Lili
Fitts, Jeffrey P.
Rawn, Claudia
Huq, Ashfia
Leonard, Donovan N.
Eskelsen, Jeremy R.
Jantzen, Carol M.
Navrotsky, Alexandra
description Treatment and immobilization of technetium-99 (99Tc) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and meso-porous crystalline solids, specifically sodalite. We synthesized and characterized the structure of perrhenate sodalite, Na8[AlSiO4]6(ReO4)2, and the structure of a mixed guest perrhenate/pertechnetate sodalite, Na8[AlSiO4]6(ReO4)2-x(TcO4)x. Perrhenate was used as a chemical analogue for pertechnetate. Bulk analyses of each solid confirm a cubic sodalite-type structure (P$ \overline{43}\ $n, No. 218 space group) with rhenium and technetium in the 7+ oxidation state. High-resolution nanometer scale characterization measurements provide first-of-a-kind evidence that the ReO4- anions are distributed in a periodic array in the sample, nanoscale clustering is not observed, and the ReO4- anion occupies the center of the sodalite β-cage in Na8[AlSiO4]6(ReO4)2. We also demonstrate, for the first time, that the TcO4- anion can be incorporated into the sodalite structure. Lastly, thermochemistry measurements for the perrhenate sodalite were used to estimate the thermochemistry of pertechnetate sodalite based on a relationship between ionic potential and the enthalpy and Gibbs free energy of formation for previously measured oxyanion-bearing feldspathoid phases. The results collected in this study suggest that micro- and mesoporous crystalline solids maybe viable candidates for the treatment and immobilization of 99Tc present in reprocessed nuclear waste streams and contaminated subsurface environments.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1340434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1340434</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_13404343</originalsourceid><addsrcrecordid>eNqNyzsLwjAUhuEgCtbLfwjuxZOmlTqLl0UQ7OBWQnpKI20CySnov1fRoaPT9w3PO2KRyBKIszwTYxYBCBlv5eY2ZbMQ7gCQSMgjVl_J95p6j1zZihcN-s7pBjsTyD-5q_kFvW_QKkJ-dZVqDX3p2Tyw4sceAw3M-n0JdWORhsWCTWrVBlz-ds5Wh32xO8UukCmDNp9GO2tRUylkCqlM5V_oBcveSQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite</title><source>ACS Publications</source><creator>Pierce, Eric M. ; Lilova, Kristina ; Missimer, David M. ; Lukens, Wayne W. ; Wu, Lili ; Fitts, Jeffrey P. ; Rawn, Claudia ; Huq, Ashfia ; Leonard, Donovan N. ; Eskelsen, Jeremy R. ; Jantzen, Carol M. ; Navrotsky, Alexandra</creator><creatorcontrib>Pierce, Eric M. ; Lilova, Kristina ; Missimer, David M. ; Lukens, Wayne W. ; Wu, Lili ; Fitts, Jeffrey P. ; Rawn, Claudia ; Huq, Ashfia ; Leonard, Donovan N. ; Eskelsen, Jeremy R. ; Jantzen, Carol M. ; Navrotsky, Alexandra ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Treatment and immobilization of technetium-99 (99Tc) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and meso-porous crystalline solids, specifically sodalite. We synthesized and characterized the structure of perrhenate sodalite, Na8[AlSiO4]6(ReO4)2, and the structure of a mixed guest perrhenate/pertechnetate sodalite, Na8[AlSiO4]6(ReO4)2-x(TcO4)x. Perrhenate was used as a chemical analogue for pertechnetate. Bulk analyses of each solid confirm a cubic sodalite-type structure (P$ \overline{43}\ $n, No. 218 space group) with rhenium and technetium in the 7+ oxidation state. High-resolution nanometer scale characterization measurements provide first-of-a-kind evidence that the ReO4- anions are distributed in a periodic array in the sample, nanoscale clustering is not observed, and the ReO4- anion occupies the center of the sodalite β-cage in Na8[AlSiO4]6(ReO4)2. We also demonstrate, for the first time, that the TcO4- anion can be incorporated into the sodalite structure. Lastly, thermochemistry measurements for the perrhenate sodalite were used to estimate the thermochemistry of pertechnetate sodalite based on a relationship between ionic potential and the enthalpy and Gibbs free energy of formation for previously measured oxyanion-bearing feldspathoid phases. The results collected in this study suggest that micro- and mesoporous crystalline solids maybe viable candidates for the treatment and immobilization of 99Tc present in reprocessed nuclear waste streams and contaminated subsurface environments.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>extended x-ray absorption spectroscopy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; perrhenate sodalite ; pertechnetate sodalite ; scanning transmission electron microscopy ; ultra STEM ; x-ray absorption spectroscopy</subject><ispartof>Environmental science &amp; technology, 2016-12, Vol.51 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000249511931 ; 0000000207967631 ; 0000000232600364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1340434$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pierce, Eric M.</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Missimer, David M.</creatorcontrib><creatorcontrib>Lukens, Wayne W.</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Fitts, Jeffrey P.</creatorcontrib><creatorcontrib>Rawn, Claudia</creatorcontrib><creatorcontrib>Huq, Ashfia</creatorcontrib><creatorcontrib>Leonard, Donovan N.</creatorcontrib><creatorcontrib>Eskelsen, Jeremy R.</creatorcontrib><creatorcontrib>Jantzen, Carol M.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite</title><title>Environmental science &amp; technology</title><description>Treatment and immobilization of technetium-99 (99Tc) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and meso-porous crystalline solids, specifically sodalite. We synthesized and characterized the structure of perrhenate sodalite, Na8[AlSiO4]6(ReO4)2, and the structure of a mixed guest perrhenate/pertechnetate sodalite, Na8[AlSiO4]6(ReO4)2-x(TcO4)x. Perrhenate was used as a chemical analogue for pertechnetate. Bulk analyses of each solid confirm a cubic sodalite-type structure (P$ \overline{43}\ $n, No. 218 space group) with rhenium and technetium in the 7+ oxidation state. High-resolution nanometer scale characterization measurements provide first-of-a-kind evidence that the ReO4- anions are distributed in a periodic array in the sample, nanoscale clustering is not observed, and the ReO4- anion occupies the center of the sodalite β-cage in Na8[AlSiO4]6(ReO4)2. We also demonstrate, for the first time, that the TcO4- anion can be incorporated into the sodalite structure. Lastly, thermochemistry measurements for the perrhenate sodalite were used to estimate the thermochemistry of pertechnetate sodalite based on a relationship between ionic potential and the enthalpy and Gibbs free energy of formation for previously measured oxyanion-bearing feldspathoid phases. The results collected in this study suggest that micro- and mesoporous crystalline solids maybe viable candidates for the treatment and immobilization of 99Tc present in reprocessed nuclear waste streams and contaminated subsurface environments.</description><subject>extended x-ray absorption spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>perrhenate sodalite</subject><subject>pertechnetate sodalite</subject><subject>scanning transmission electron microscopy</subject><subject>ultra STEM</subject><subject>x-ray absorption spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNyzsLwjAUhuEgCtbLfwjuxZOmlTqLl0UQ7OBWQnpKI20CySnov1fRoaPT9w3PO2KRyBKIszwTYxYBCBlv5eY2ZbMQ7gCQSMgjVl_J95p6j1zZihcN-s7pBjsTyD-5q_kFvW_QKkJ-dZVqDX3p2Tyw4sceAw3M-n0JdWORhsWCTWrVBlz-ds5Wh32xO8UukCmDNp9GO2tRUylkCqlM5V_oBcveSQ4</recordid><startdate>20161205</startdate><enddate>20161205</enddate><creator>Pierce, Eric M.</creator><creator>Lilova, Kristina</creator><creator>Missimer, David M.</creator><creator>Lukens, Wayne W.</creator><creator>Wu, Lili</creator><creator>Fitts, Jeffrey P.</creator><creator>Rawn, Claudia</creator><creator>Huq, Ashfia</creator><creator>Leonard, Donovan N.</creator><creator>Eskelsen, Jeremy R.</creator><creator>Jantzen, Carol M.</creator><creator>Navrotsky, Alexandra</creator><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000249511931</orcidid><orcidid>https://orcid.org/0000000207967631</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid></search><sort><creationdate>20161205</creationdate><title>Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite</title><author>Pierce, Eric M. ; Lilova, Kristina ; Missimer, David M. ; Lukens, Wayne W. ; Wu, Lili ; Fitts, Jeffrey P. ; Rawn, Claudia ; Huq, Ashfia ; Leonard, Donovan N. ; Eskelsen, Jeremy R. ; Jantzen, Carol M. ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_13404343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>extended x-ray absorption spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>perrhenate sodalite</topic><topic>pertechnetate sodalite</topic><topic>scanning transmission electron microscopy</topic><topic>ultra STEM</topic><topic>x-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, Eric M.</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Missimer, David M.</creatorcontrib><creatorcontrib>Lukens, Wayne W.</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Fitts, Jeffrey P.</creatorcontrib><creatorcontrib>Rawn, Claudia</creatorcontrib><creatorcontrib>Huq, Ashfia</creatorcontrib><creatorcontrib>Leonard, Donovan N.</creatorcontrib><creatorcontrib>Eskelsen, Jeremy R.</creatorcontrib><creatorcontrib>Jantzen, Carol M.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, Eric M.</au><au>Lilova, Kristina</au><au>Missimer, David M.</au><au>Lukens, Wayne W.</au><au>Wu, Lili</au><au>Fitts, Jeffrey P.</au><au>Rawn, Claudia</au><au>Huq, Ashfia</au><au>Leonard, Donovan N.</au><au>Eskelsen, Jeremy R.</au><au>Jantzen, Carol M.</au><au>Navrotsky, Alexandra</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite</atitle><jtitle>Environmental science &amp; technology</jtitle><date>2016-12-05</date><risdate>2016</risdate><volume>51</volume><issue>2</issue><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Treatment and immobilization of technetium-99 (99Tc) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and meso-porous crystalline solids, specifically sodalite. We synthesized and characterized the structure of perrhenate sodalite, Na8[AlSiO4]6(ReO4)2, and the structure of a mixed guest perrhenate/pertechnetate sodalite, Na8[AlSiO4]6(ReO4)2-x(TcO4)x. Perrhenate was used as a chemical analogue for pertechnetate. Bulk analyses of each solid confirm a cubic sodalite-type structure (P$ \overline{43}\ $n, No. 218 space group) with rhenium and technetium in the 7+ oxidation state. High-resolution nanometer scale characterization measurements provide first-of-a-kind evidence that the ReO4- anions are distributed in a periodic array in the sample, nanoscale clustering is not observed, and the ReO4- anion occupies the center of the sodalite β-cage in Na8[AlSiO4]6(ReO4)2. We also demonstrate, for the first time, that the TcO4- anion can be incorporated into the sodalite structure. Lastly, thermochemistry measurements for the perrhenate sodalite were used to estimate the thermochemistry of pertechnetate sodalite based on a relationship between ionic potential and the enthalpy and Gibbs free energy of formation for previously measured oxyanion-bearing feldspathoid phases. The results collected in this study suggest that micro- and mesoporous crystalline solids maybe viable candidates for the treatment and immobilization of 99Tc present in reprocessed nuclear waste streams and contaminated subsurface environments.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><orcidid>https://orcid.org/0000000249511931</orcidid><orcidid>https://orcid.org/0000000207967631</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2016-12, Vol.51 (2)
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1340434
source ACS Publications
subjects extended x-ray absorption spectroscopy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
perrhenate sodalite
pertechnetate sodalite
scanning transmission electron microscopy
ultra STEM
x-ray absorption spectroscopy
title Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Thermochemistry%20of%20Perrhenate%20Sodalite%20and%20Mixed%20Guest%20Perrhenate/Pertechnetate%20Sodalite&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Pierce,%20Eric%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2016-12-05&rft.volume=51&rft.issue=2&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/&rft_dat=%3Costi%3E1340434%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true