A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined traje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biologically inspired cognitive architectures 2017-01, Vol.19 (C), p.49-64
Hauptverfasser: James, Conrad D., Aimone, James B., Miner, Nadine E., Vineyard, Craig M., Rothganger, Fredrick H., Carlson, Kristofor D., Mulder, Samuel A., Draelos, Timothy J., Faust, Aleksandra, Marinella, Matthew J., Naegle, John H., Plimpton, Steven J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue C
container_start_page 49
container_title Biologically inspired cognitive architectures
container_volume 19
creator James, Conrad D.
Aimone, James B.
Miner, Nadine E.
Vineyard, Craig M.
Rothganger, Fredrick H.
Carlson, Kristofor D.
Mulder, Samuel A.
Draelos, Timothy J.
Faust, Aleksandra
Marinella, Matthew J.
Naegle, John H.
Plimpton, Steven J.
description Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.
doi_str_mv 10.1016/j.bica.2016.11.002
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1340263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212683X16300561</els_id><sourcerecordid>S2212683X16300561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-d413ccb274ac822ccd85281e168d2989c685167ee7dfbd0bf2c5674659966a733</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouOh-AU_Be2uStmkKXpbFf7DgRcFbSCfpNkvblKS7ut_e1BWPnmYY3nsz80PohpKUEsrvdmltQaUs9imlKSHsDC0YoyzhIhfnf332cYmWIewIIZRRUVVigb5WuLVhcj4mdDjs_cEcsWuw6rZxNrV9wGrQuFVefypvsPLQ2snAtPcm4MZ5PJi9V11ihzBab_SPfJ653vmxtYDB9eN-ssMWq3Hs4p7JuiFco4tGdcEsf-sVen98eFs_J5vXp5f1apNAnpVTonOaAdSszBUIxgC0KJighnKhWSUq4KKgvDSm1E2tSd0wKHiZ86KqOFdlll2h21OuC5OVAebjW3DDEH-QNMsJ47OInUTgXQjeNHL0tlf-KCmRM2O5kzNjOTOWlMrIOJruTyYTzz9Y4-d0M4DRkUMM187-Z_8GDWmHrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications</title><source>Alma/SFX Local Collection</source><creator>James, Conrad D. ; Aimone, James B. ; Miner, Nadine E. ; Vineyard, Craig M. ; Rothganger, Fredrick H. ; Carlson, Kristofor D. ; Mulder, Samuel A. ; Draelos, Timothy J. ; Faust, Aleksandra ; Marinella, Matthew J. ; Naegle, John H. ; Plimpton, Steven J.</creator><creatorcontrib>James, Conrad D. ; Aimone, James B. ; Miner, Nadine E. ; Vineyard, Craig M. ; Rothganger, Fredrick H. ; Carlson, Kristofor D. ; Mulder, Samuel A. ; Draelos, Timothy J. ; Faust, Aleksandra ; Marinella, Matthew J. ; Naegle, John H. ; Plimpton, Steven J. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.</description><identifier>ISSN: 2212-683X</identifier><identifier>EISSN: 2212-6848</identifier><identifier>DOI: 10.1016/j.bica.2016.11.002</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Algorithms ; Artificial neural networks ; Data-driven computing ; Machine learning ; MATHEMATICS AND COMPUTING ; Neuromorphic computing ; Pattern recognition</subject><ispartof>Biologically inspired cognitive architectures, 2017-01, Vol.19 (C), p.49-64</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-d413ccb274ac822ccd85281e168d2989c685167ee7dfbd0bf2c5674659966a733</citedby><cites>FETCH-LOGICAL-c437t-d413ccb274ac822ccd85281e168d2989c685167ee7dfbd0bf2c5674659966a733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1340263$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>James, Conrad D.</creatorcontrib><creatorcontrib>Aimone, James B.</creatorcontrib><creatorcontrib>Miner, Nadine E.</creatorcontrib><creatorcontrib>Vineyard, Craig M.</creatorcontrib><creatorcontrib>Rothganger, Fredrick H.</creatorcontrib><creatorcontrib>Carlson, Kristofor D.</creatorcontrib><creatorcontrib>Mulder, Samuel A.</creatorcontrib><creatorcontrib>Draelos, Timothy J.</creatorcontrib><creatorcontrib>Faust, Aleksandra</creatorcontrib><creatorcontrib>Marinella, Matthew J.</creatorcontrib><creatorcontrib>Naegle, John H.</creatorcontrib><creatorcontrib>Plimpton, Steven J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications</title><title>Biologically inspired cognitive architectures</title><description>Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data-driven computing</subject><subject>Machine learning</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Neuromorphic computing</subject><subject>Pattern recognition</subject><issn>2212-683X</issn><issn>2212-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouOh-AU_Be2uStmkKXpbFf7DgRcFbSCfpNkvblKS7ut_e1BWPnmYY3nsz80PohpKUEsrvdmltQaUs9imlKSHsDC0YoyzhIhfnf332cYmWIewIIZRRUVVigb5WuLVhcj4mdDjs_cEcsWuw6rZxNrV9wGrQuFVefypvsPLQ2snAtPcm4MZ5PJi9V11ihzBab_SPfJ653vmxtYDB9eN-ssMWq3Hs4p7JuiFco4tGdcEsf-sVen98eFs_J5vXp5f1apNAnpVTonOaAdSszBUIxgC0KJighnKhWSUq4KKgvDSm1E2tSd0wKHiZ86KqOFdlll2h21OuC5OVAebjW3DDEH-QNMsJ47OInUTgXQjeNHL0tlf-KCmRM2O5kzNjOTOWlMrIOJruTyYTzz9Y4-d0M4DRkUMM187-Z_8GDWmHrQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>James, Conrad D.</creator><creator>Aimone, James B.</creator><creator>Miner, Nadine E.</creator><creator>Vineyard, Craig M.</creator><creator>Rothganger, Fredrick H.</creator><creator>Carlson, Kristofor D.</creator><creator>Mulder, Samuel A.</creator><creator>Draelos, Timothy J.</creator><creator>Faust, Aleksandra</creator><creator>Marinella, Matthew J.</creator><creator>Naegle, John H.</creator><creator>Plimpton, Steven J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170101</creationdate><title>A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications</title><author>James, Conrad D. ; Aimone, James B. ; Miner, Nadine E. ; Vineyard, Craig M. ; Rothganger, Fredrick H. ; Carlson, Kristofor D. ; Mulder, Samuel A. ; Draelos, Timothy J. ; Faust, Aleksandra ; Marinella, Matthew J. ; Naegle, John H. ; Plimpton, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-d413ccb274ac822ccd85281e168d2989c685167ee7dfbd0bf2c5674659966a733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data-driven computing</topic><topic>Machine learning</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Neuromorphic computing</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, Conrad D.</creatorcontrib><creatorcontrib>Aimone, James B.</creatorcontrib><creatorcontrib>Miner, Nadine E.</creatorcontrib><creatorcontrib>Vineyard, Craig M.</creatorcontrib><creatorcontrib>Rothganger, Fredrick H.</creatorcontrib><creatorcontrib>Carlson, Kristofor D.</creatorcontrib><creatorcontrib>Mulder, Samuel A.</creatorcontrib><creatorcontrib>Draelos, Timothy J.</creatorcontrib><creatorcontrib>Faust, Aleksandra</creatorcontrib><creatorcontrib>Marinella, Matthew J.</creatorcontrib><creatorcontrib>Naegle, John H.</creatorcontrib><creatorcontrib>Plimpton, Steven J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Biologically inspired cognitive architectures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, Conrad D.</au><au>Aimone, James B.</au><au>Miner, Nadine E.</au><au>Vineyard, Craig M.</au><au>Rothganger, Fredrick H.</au><au>Carlson, Kristofor D.</au><au>Mulder, Samuel A.</au><au>Draelos, Timothy J.</au><au>Faust, Aleksandra</au><au>Marinella, Matthew J.</au><au>Naegle, John H.</au><au>Plimpton, Steven J.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications</atitle><jtitle>Biologically inspired cognitive architectures</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>19</volume><issue>C</issue><spage>49</spage><epage>64</epage><pages>49-64</pages><issn>2212-683X</issn><eissn>2212-6848</eissn><abstract>Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.bica.2016.11.002</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2212-683X
ispartof Biologically inspired cognitive architectures, 2017-01, Vol.19 (C), p.49-64
issn 2212-683X
2212-6848
language eng
recordid cdi_osti_scitechconnect_1340263
source Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Data-driven computing
Machine learning
MATHEMATICS AND COMPUTING
Neuromorphic computing
Pattern recognition
title A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20historical%20survey%20of%20algorithms%20and%20hardware%20architectures%20for%20neural-inspired%20and%20neuromorphic%20computing%20applications&rft.jtitle=Biologically%20inspired%20cognitive%20architectures&rft.au=James,%20Conrad%20D.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2017-01-01&rft.volume=19&rft.issue=C&rft.spage=49&rft.epage=64&rft.pages=49-64&rft.issn=2212-683X&rft.eissn=2212-6848&rft_id=info:doi/10.1016/j.bica.2016.11.002&rft_dat=%3Celsevier_osti_%3ES2212683X16300561%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2212683X16300561&rfr_iscdi=true