Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system

•A new method for prediction of percolation thresholds is presented.•An extension of the concept of excluded volume to polydisperse systems is proposed.•Percolation threshold estimates for the 2D binary disk system. For dispersions containing a single type of particle, it has been observed that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2017-06, Vol.46 (C), p.116-125
Hauptverfasser: Meeks, Kelsey, Pantoya, Michelle L., Green, Micah, Berg, Jordan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue C
container_start_page 116
container_title Applied Mathematical Modelling
container_volume 46
creator Meeks, Kelsey
Pantoya, Michelle L.
Green, Micah
Berg, Jordan
description •A new method for prediction of percolation thresholds is presented.•An extension of the concept of excluded volume to polydisperse systems is proposed.•Percolation threshold estimates for the 2D binary disk system. For dispersions containing a single type of particle, it has been observed that the onset of percolation coincides with a critical value of volume fraction. When the volume fraction is calculated based on excluded volume, this critical percolation threshold is nearly invariant to particle shape. The critical threshold has been calculated to high precision for simple geometries using Monte Carlo simulations, but this method is slow at best, and infeasible for complex geometries. This paper explores an analytical approach to the prediction of percolation threshold in polydisperse mixtures. Specifically, this paper suggests an extension of the concept of excluded volume, and applies that extension to the 2D binary disk system. The simple analytical expression obtained is compared to Monte Carlo results from the literature. The result may be computed extremely rapidly and matches key parameters closely enough to be useful for composite material design.
doi_str_mv 10.1016/j.apm.2017.01.046
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1340261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X17300525</els_id><sourcerecordid>1932137665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-35bad9f8ccad9681640a94d30a257146bbce65a8c3917fa1a146dba40cea79c03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEuXxAewsWDeMm8RpYIUqXhISG5DYWY49oS6pndouon_PVO2CFauxZ84d3blZdsEh58DF9SJXwzKfAK9z4DmU4iAbQQH1uIHy4_DP-zg7iXEBABX9Rtnq_iehM9Z9sjRHhj-6Xxs07Nv36yWyzgc2YNC-V8l6R0zAOPe9YRiTXaqEkVnHBt9vjI1ERmRxExMu4w17o4WtdSpsGA2_9oOz7KhTfcTzfT3N3h_u32ZP45fXx-fZ3ctYF02VxkXVKtN0U62piCkXJaimNAWoSVXzUrStRlGpKdG87hRX1DOtKkGjqhsNxWl2udvryamM2ibUc-2dQ50kL0qYCE7Q1Q4agl-t6Sa58OvgyJfkTTHhRS1ERRTfUTr4GAN2cgh0fNhIDnIbv1xIil9u45fAJcVPmtudBunGb4thawGdRmPD1oHx9h_1L_EKj7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932137665</pqid></control><display><type>article</type><title>Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system</title><source>Elsevier ScienceDirect Journals</source><source>EBSCOhost Business Source Complete</source><source>Education Source</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Meeks, Kelsey ; Pantoya, Michelle L. ; Green, Micah ; Berg, Jordan</creator><creatorcontrib>Meeks, Kelsey ; Pantoya, Michelle L. ; Green, Micah ; Berg, Jordan ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>•A new method for prediction of percolation thresholds is presented.•An extension of the concept of excluded volume to polydisperse systems is proposed.•Percolation threshold estimates for the 2D binary disk system. For dispersions containing a single type of particle, it has been observed that the onset of percolation coincides with a critical value of volume fraction. When the volume fraction is calculated based on excluded volume, this critical percolation threshold is nearly invariant to particle shape. The critical threshold has been calculated to high precision for simple geometries using Monte Carlo simulations, but this method is slow at best, and infeasible for complex geometries. This paper explores an analytical approach to the prediction of percolation threshold in polydisperse mixtures. Specifically, this paper suggests an extension of the concept of excluded volume, and applies that extension to the 2D binary disk system. The simple analytical expression obtained is compared to Monte Carlo results from the literature. The result may be computed extremely rapidly and matches key parameters closely enough to be useful for composite material design.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2017.01.046</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Binary disks ; Composite materials ; Computer simulation ; Concentration (composition) ; Dispersion ; Dispersions ; Excluded volume ; Extreme values ; Geometry ; Mathematical analysis ; MATHEMATICS AND COMPUTING ; Monte Carlo simulation ; Particle shape ; Percolation ; Percolation threshold estimates ; Studies</subject><ispartof>Applied Mathematical Modelling, 2017-06, Vol.46 (C), p.116-125</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Jun 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-35bad9f8ccad9681640a94d30a257146bbce65a8c3917fa1a146dba40cea79c03</citedby><cites>FETCH-LOGICAL-c395t-35bad9f8ccad9681640a94d30a257146bbce65a8c3917fa1a146dba40cea79c03</cites><orcidid>0000-0001-9279-3412 ; 0000000192793412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2017.01.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1340261$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meeks, Kelsey</creatorcontrib><creatorcontrib>Pantoya, Michelle L.</creatorcontrib><creatorcontrib>Green, Micah</creatorcontrib><creatorcontrib>Berg, Jordan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system</title><title>Applied Mathematical Modelling</title><description>•A new method for prediction of percolation thresholds is presented.•An extension of the concept of excluded volume to polydisperse systems is proposed.•Percolation threshold estimates for the 2D binary disk system. For dispersions containing a single type of particle, it has been observed that the onset of percolation coincides with a critical value of volume fraction. When the volume fraction is calculated based on excluded volume, this critical percolation threshold is nearly invariant to particle shape. The critical threshold has been calculated to high precision for simple geometries using Monte Carlo simulations, but this method is slow at best, and infeasible for complex geometries. This paper explores an analytical approach to the prediction of percolation threshold in polydisperse mixtures. Specifically, this paper suggests an extension of the concept of excluded volume, and applies that extension to the 2D binary disk system. The simple analytical expression obtained is compared to Monte Carlo results from the literature. The result may be computed extremely rapidly and matches key parameters closely enough to be useful for composite material design.</description><subject>Binary disks</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Concentration (composition)</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Excluded volume</subject><subject>Extreme values</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Monte Carlo simulation</subject><subject>Particle shape</subject><subject>Percolation</subject><subject>Percolation threshold estimates</subject><subject>Studies</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEuXxAewsWDeMm8RpYIUqXhISG5DYWY49oS6pndouon_PVO2CFauxZ84d3blZdsEh58DF9SJXwzKfAK9z4DmU4iAbQQH1uIHy4_DP-zg7iXEBABX9Rtnq_iehM9Z9sjRHhj-6Xxs07Nv36yWyzgc2YNC-V8l6R0zAOPe9YRiTXaqEkVnHBt9vjI1ERmRxExMu4w17o4WtdSpsGA2_9oOz7KhTfcTzfT3N3h_u32ZP45fXx-fZ3ctYF02VxkXVKtN0U62piCkXJaimNAWoSVXzUrStRlGpKdG87hRX1DOtKkGjqhsNxWl2udvryamM2ibUc-2dQ50kL0qYCE7Q1Q4agl-t6Sa58OvgyJfkTTHhRS1ERRTfUTr4GAN2cgh0fNhIDnIbv1xIil9u45fAJcVPmtudBunGb4thawGdRmPD1oHx9h_1L_EKj7k</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Meeks, Kelsey</creator><creator>Pantoya, Michelle L.</creator><creator>Green, Micah</creator><creator>Berg, Jordan</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9279-3412</orcidid><orcidid>https://orcid.org/0000000192793412</orcidid></search><sort><creationdate>201706</creationdate><title>Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system</title><author>Meeks, Kelsey ; Pantoya, Michelle L. ; Green, Micah ; Berg, Jordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-35bad9f8ccad9681640a94d30a257146bbce65a8c3917fa1a146dba40cea79c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binary disks</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Concentration (composition)</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Excluded volume</topic><topic>Extreme values</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Monte Carlo simulation</topic><topic>Particle shape</topic><topic>Percolation</topic><topic>Percolation threshold estimates</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeks, Kelsey</creatorcontrib><creatorcontrib>Pantoya, Michelle L.</creatorcontrib><creatorcontrib>Green, Micah</creatorcontrib><creatorcontrib>Berg, Jordan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeks, Kelsey</au><au>Pantoya, Michelle L.</au><au>Green, Micah</au><au>Berg, Jordan</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-06</date><risdate>2017</risdate><volume>46</volume><issue>C</issue><spage>116</spage><epage>125</epage><pages>116-125</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•A new method for prediction of percolation thresholds is presented.•An extension of the concept of excluded volume to polydisperse systems is proposed.•Percolation threshold estimates for the 2D binary disk system. For dispersions containing a single type of particle, it has been observed that the onset of percolation coincides with a critical value of volume fraction. When the volume fraction is calculated based on excluded volume, this critical percolation threshold is nearly invariant to particle shape. The critical threshold has been calculated to high precision for simple geometries using Monte Carlo simulations, but this method is slow at best, and infeasible for complex geometries. This paper explores an analytical approach to the prediction of percolation threshold in polydisperse mixtures. Specifically, this paper suggests an extension of the concept of excluded volume, and applies that extension to the 2D binary disk system. The simple analytical expression obtained is compared to Monte Carlo results from the literature. The result may be computed extremely rapidly and matches key parameters closely enough to be useful for composite material design.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2017.01.046</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9279-3412</orcidid><orcidid>https://orcid.org/0000000192793412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2017-06, Vol.46 (C), p.116-125
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_osti_scitechconnect_1340261
source Elsevier ScienceDirect Journals; EBSCOhost Business Source Complete; Education Source; EZB-FREE-00999 freely available EZB journals
subjects Binary disks
Composite materials
Computer simulation
Concentration (composition)
Dispersion
Dispersions
Excluded volume
Extreme values
Geometry
Mathematical analysis
MATHEMATICS AND COMPUTING
Monte Carlo simulation
Particle shape
Percolation
Percolation threshold estimates
Studies
title Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20the%20excluded%20volume%20for%20percolation%20threshold%20estimates%20in%20polydisperse%20systems:%20The%20binary%20disk%20system&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Meeks,%20Kelsey&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2017-06&rft.volume=46&rft.issue=C&rft.spage=116&rft.epage=125&rft.pages=116-125&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2017.01.046&rft_dat=%3Cproquest_osti_%3E1932137665%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932137665&rft_id=info:pmid/&rft_els_id=S0307904X17300525&rfr_iscdi=true