Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement
Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2016-11, Vol.120 (43), p.25053-25060 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25060 |
---|---|
container_issue | 43 |
container_start_page | 25053 |
container_title | Journal of physical chemistry. C |
container_volume | 120 |
creator | Strand, Matthew B Leong, G. Jeremy Tassone, Christopher J Larsen, Brian Neyerlin, K. C Gorman, Brian Diercks, David R Pylypenko, Svitlana Pivovar, Bryan Richards, Ryan M |
description | Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate the fundamental mechanisms of SGD. Characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube. |
doi_str_mv | 10.1021/acs.jpcc.6b07363 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1339514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b956535008</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-44159669f3fb1ea574ef04c4eaca0119c02420135da91ba760802d8a81d9adc03</originalsourceid><addsrcrecordid>eNp1UMFOAjEQbYwmInr32Hh2sd12d-mRoKIJ6mH13Ayz3VAC7WZbSPDrLUK8eZmZzLz3Mu8RcsvZiLOcPwCG0apDHJULVolSnJEBVyLPKlkU53-zrC7JVQgrxgrBuBiQ9s3gEpwN0SKt47bZU9_SegmdySZp7WPvu3R6B-c3EE1vYR1ovXdxaYL9Ng3dWaB1510EZ_w20Bmsd0kQ6aMN3RrQbIyL1-SiTURzc-pD8vX89Dl9yeYfs9fpZJ6B5EXMZKqqLFUr2gU3UFTStEyiNIDAOFfIcpmnv4sGFF9AVbIxy5sxjHmjoEEmhuTuqOuTIR3QxmQPvXMGo-ZCqILLBGJHEPY-hN60uuvtBvq95kwfwtQpTH0IU5_CTJT7I-X34re9Sy7-h_8A35Z59g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement</title><source>American Chemical Society Journals</source><creator>Strand, Matthew B ; Leong, G. Jeremy ; Tassone, Christopher J ; Larsen, Brian ; Neyerlin, K. C ; Gorman, Brian ; Diercks, David R ; Pylypenko, Svitlana ; Pivovar, Bryan ; Richards, Ryan M</creator><creatorcontrib>Strand, Matthew B ; Leong, G. Jeremy ; Tassone, Christopher J ; Larsen, Brian ; Neyerlin, K. C ; Gorman, Brian ; Diercks, David R ; Pylypenko, Svitlana ; Pivovar, Bryan ; Richards, Ryan M ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate the fundamental mechanisms of SGD. Characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b07363</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; nanotubes ; spontaneous galvanic displacement ; synthesis</subject><ispartof>Journal of physical chemistry. C, 2016-11, Vol.120 (43), p.25053-25060</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-44159669f3fb1ea574ef04c4eaca0119c02420135da91ba760802d8a81d9adc03</citedby><cites>FETCH-LOGICAL-a415t-44159669f3fb1ea574ef04c4eaca0119c02420135da91ba760802d8a81d9adc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b07363$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.6b07363$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1339514$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Strand, Matthew B</creatorcontrib><creatorcontrib>Leong, G. Jeremy</creatorcontrib><creatorcontrib>Tassone, Christopher J</creatorcontrib><creatorcontrib>Larsen, Brian</creatorcontrib><creatorcontrib>Neyerlin, K. C</creatorcontrib><creatorcontrib>Gorman, Brian</creatorcontrib><creatorcontrib>Diercks, David R</creatorcontrib><creatorcontrib>Pylypenko, Svitlana</creatorcontrib><creatorcontrib>Pivovar, Bryan</creatorcontrib><creatorcontrib>Richards, Ryan M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate the fundamental mechanisms of SGD. Characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.</description><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>nanotubes</subject><subject>spontaneous galvanic displacement</subject><subject>synthesis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UMFOAjEQbYwmInr32Hh2sd12d-mRoKIJ6mH13Ayz3VAC7WZbSPDrLUK8eZmZzLz3Mu8RcsvZiLOcPwCG0apDHJULVolSnJEBVyLPKlkU53-zrC7JVQgrxgrBuBiQ9s3gEpwN0SKt47bZU9_SegmdySZp7WPvu3R6B-c3EE1vYR1ovXdxaYL9Ng3dWaB1510EZ_w20Bmsd0kQ6aMN3RrQbIyL1-SiTURzc-pD8vX89Dl9yeYfs9fpZJ6B5EXMZKqqLFUr2gU3UFTStEyiNIDAOFfIcpmnv4sGFF9AVbIxy5sxjHmjoEEmhuTuqOuTIR3QxmQPvXMGo-ZCqILLBGJHEPY-hN60uuvtBvq95kwfwtQpTH0IU5_CTJT7I-X34re9Sy7-h_8A35Z59g</recordid><startdate>20161103</startdate><enddate>20161103</enddate><creator>Strand, Matthew B</creator><creator>Leong, G. Jeremy</creator><creator>Tassone, Christopher J</creator><creator>Larsen, Brian</creator><creator>Neyerlin, K. C</creator><creator>Gorman, Brian</creator><creator>Diercks, David R</creator><creator>Pylypenko, Svitlana</creator><creator>Pivovar, Bryan</creator><creator>Richards, Ryan M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161103</creationdate><title>Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement</title><author>Strand, Matthew B ; Leong, G. Jeremy ; Tassone, Christopher J ; Larsen, Brian ; Neyerlin, K. C ; Gorman, Brian ; Diercks, David R ; Pylypenko, Svitlana ; Pivovar, Bryan ; Richards, Ryan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-44159669f3fb1ea574ef04c4eaca0119c02420135da91ba760802d8a81d9adc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>nanotubes</topic><topic>spontaneous galvanic displacement</topic><topic>synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strand, Matthew B</creatorcontrib><creatorcontrib>Leong, G. Jeremy</creatorcontrib><creatorcontrib>Tassone, Christopher J</creatorcontrib><creatorcontrib>Larsen, Brian</creatorcontrib><creatorcontrib>Neyerlin, K. C</creatorcontrib><creatorcontrib>Gorman, Brian</creatorcontrib><creatorcontrib>Diercks, David R</creatorcontrib><creatorcontrib>Pylypenko, Svitlana</creatorcontrib><creatorcontrib>Pivovar, Bryan</creatorcontrib><creatorcontrib>Richards, Ryan M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strand, Matthew B</au><au>Leong, G. Jeremy</au><au>Tassone, Christopher J</au><au>Larsen, Brian</au><au>Neyerlin, K. C</au><au>Gorman, Brian</au><au>Diercks, David R</au><au>Pylypenko, Svitlana</au><au>Pivovar, Bryan</au><au>Richards, Ryan M</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-11-03</date><risdate>2016</risdate><volume>120</volume><issue>43</issue><spage>25053</spage><epage>25060</epage><pages>25053-25060</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate the fundamental mechanisms of SGD. Characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b07363</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2016-11, Vol.120 (43), p.25053-25060 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1339514 |
source | American Chemical Society Journals |
subjects | MATERIALS SCIENCE NANOSCIENCE AND NANOTECHNOLOGY nanotubes spontaneous galvanic displacement synthesis |
title | Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20Shape-Anisotropic%20Nanomaterials%20Synthesized%20via%20Spontaneous%20Galvanic%20Displacement&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Strand,%20Matthew%20B&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2016-11-03&rft.volume=120&rft.issue=43&rft.spage=25053&rft.epage=25060&rft.pages=25053-25060&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b07363&rft_dat=%3Cacs_osti_%3Eb956535008%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |