Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion
Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulatio...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2016-12, Vol.12 (12), p.5709-5718 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5718 |
---|---|
container_issue | 12 |
container_start_page | 5709 |
container_title | Journal of chemical theory and computation |
container_volume | 12 |
creator | Chaudhari, Mangesh I Nair, Jijeesh R Pratt, Lawrence R Soto, Fernando A Balbuena, Perla B Rempe, Susan B |
description | Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6 – transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions. |
doi_str_mv | 10.1021/acs.jctc.6b00824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1339276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1834995649</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-e589f45dcdca1de9bb5c5400fef46a02c4e106e8da50be66d8a9103842557e263</originalsourceid><addsrcrecordid>eNqNkU1rVDEUhoNYbK3uXUlw5cKZ5vsmyzJ-FQZaqO6EkJt70km5N6lJruC_905n7E5wlRPO876L8yD0hpI1JYxeOF_X9775teoJ0Uw8Q2dUCrMyiqnnTzPVp-hlrfeEcC4Yf4FOWdepjhNzhn7cejfGdIcvW56ixzeutOhGvNm5cgcV54A3rvQ5uQb4No-_ILWKQy54G9suzhO-yulx4VpcJpcG_DGGMNfl9wqdBDdWeH18z9H3z5--bb6uttdfrjaX25UTXLcVSG2CkIMfvKMDmL6XXgpCAgShHGFeACUK9OAk6UGpQTtDCdeCSdkBU_wcvTv05tqirT428DufUwLfLOXcsG4PvT9ADyX_nKE2O8XqYRxdgjxXS7Umy4W0ov-BcmGMVMIsKDmgvuRaCwT7UOLkym9Lid07sosju3dkj46WyNtj-9xPMDwF_kpZgA8H4DGa55KW4_277w_iOZyp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1834995649</pqid></control><display><type>article</type><title>Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion</title><source>ACS Publications</source><creator>Chaudhari, Mangesh I ; Nair, Jijeesh R ; Pratt, Lawrence R ; Soto, Fernando A ; Balbuena, Perla B ; Rempe, Susan B</creator><creatorcontrib>Chaudhari, Mangesh I ; Nair, Jijeesh R ; Pratt, Lawrence R ; Soto, Fernando A ; Balbuena, Perla B ; Rempe, Susan B ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6 – transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00824</identifier><identifier>PMID: 27767309</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbonates ; Computation ; Computer simulation ; Diffusion ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematical analysis ; Personal computers ; Solvation ; Solvents</subject><ispartof>Journal of chemical theory and computation, 2016-12, Vol.12 (12), p.5709-5718</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-e589f45dcdca1de9bb5c5400fef46a02c4e106e8da50be66d8a9103842557e263</citedby><cites>FETCH-LOGICAL-a438t-e589f45dcdca1de9bb5c5400fef46a02c4e106e8da50be66d8a9103842557e263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00824$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00824$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27767309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1339276$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhari, Mangesh I</creatorcontrib><creatorcontrib>Nair, Jijeesh R</creatorcontrib><creatorcontrib>Pratt, Lawrence R</creatorcontrib><creatorcontrib>Soto, Fernando A</creatorcontrib><creatorcontrib>Balbuena, Perla B</creatorcontrib><creatorcontrib>Rempe, Susan B</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6 – transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.</description><subject>Carbonates</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical analysis</subject><subject>Personal computers</subject><subject>Solvation</subject><subject>Solvents</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rVDEUhoNYbK3uXUlw5cKZ5vsmyzJ-FQZaqO6EkJt70km5N6lJruC_905n7E5wlRPO876L8yD0hpI1JYxeOF_X9775teoJ0Uw8Q2dUCrMyiqnnTzPVp-hlrfeEcC4Yf4FOWdepjhNzhn7cejfGdIcvW56ixzeutOhGvNm5cgcV54A3rvQ5uQb4No-_ILWKQy54G9suzhO-yulx4VpcJpcG_DGGMNfl9wqdBDdWeH18z9H3z5--bb6uttdfrjaX25UTXLcVSG2CkIMfvKMDmL6XXgpCAgShHGFeACUK9OAk6UGpQTtDCdeCSdkBU_wcvTv05tqirT428DufUwLfLOXcsG4PvT9ADyX_nKE2O8XqYRxdgjxXS7Umy4W0ov-BcmGMVMIsKDmgvuRaCwT7UOLkym9Lid07sosju3dkj46WyNtj-9xPMDwF_kpZgA8H4DGa55KW4_277w_iOZyp</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Chaudhari, Mangesh I</creator><creator>Nair, Jijeesh R</creator><creator>Pratt, Lawrence R</creator><creator>Soto, Fernando A</creator><creator>Balbuena, Perla B</creator><creator>Rempe, Susan B</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161213</creationdate><title>Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion</title><author>Chaudhari, Mangesh I ; Nair, Jijeesh R ; Pratt, Lawrence R ; Soto, Fernando A ; Balbuena, Perla B ; Rempe, Susan B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-e589f45dcdca1de9bb5c5400fef46a02c4e106e8da50be66d8a9103842557e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbonates</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical analysis</topic><topic>Personal computers</topic><topic>Solvation</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhari, Mangesh I</creatorcontrib><creatorcontrib>Nair, Jijeesh R</creatorcontrib><creatorcontrib>Pratt, Lawrence R</creatorcontrib><creatorcontrib>Soto, Fernando A</creatorcontrib><creatorcontrib>Balbuena, Perla B</creatorcontrib><creatorcontrib>Rempe, Susan B</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhari, Mangesh I</au><au>Nair, Jijeesh R</au><au>Pratt, Lawrence R</au><au>Soto, Fernando A</au><au>Balbuena, Perla B</au><au>Rempe, Susan B</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>12</volume><issue>12</issue><spage>5709</spage><epage>5718</epage><pages>5709-5718</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6 – transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27767309</pmid><doi>10.1021/acs.jctc.6b00824</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2016-12, Vol.12 (12), p.5709-5718 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_osti_scitechconnect_1339276 |
source | ACS Publications |
subjects | Carbonates Computation Computer simulation Diffusion INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mathematical analysis Personal computers Solvation Solvents |
title | Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20Atomic%20Partial%20Charges%20of%20Carbonate%20Solvents%20for%20Lithium%20Ion%20Solvation%20and%20Diffusion&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Chaudhari,%20Mangesh%20I&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2016-12-13&rft.volume=12&rft.issue=12&rft.spage=5709&rft.epage=5718&rft.pages=5709-5718&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00824&rft_dat=%3Cproquest_osti_%3E1834995649%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1834995649&rft_id=info:pmid/27767309&rfr_iscdi=true |