Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model

We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the k-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth- and sixth-order energy cumulants vanish in the limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-12, Vol.94 (12), Article 126010
Hauptverfasser: García-García, Antonio M., Verbaarschot, Jacobus J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physical review. D
container_volume 94
creator García-García, Antonio M.
Verbaarschot, Jacobus J. M.
description We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the k-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth- and sixth-order energy cumulants vanish in the limit of a large number of particles N→∞, which is consistent with a Gaussian spectral density. However, for finite N, the tail of the average spectral density is well approximated by a semicircle law. The specific heat coefficient, determined numerically from the low-temperature behavior of the partition function, is consistent with the value obtained by previous analytical calculations. For energy scales of the order of the mean level spacing we show that level statistics are well described by random matrix theory. Due to the underlying Clifford algebra of the model, the universality class of the spectral correlations depends on N. For larger energy separations we identify an energy scale that grows with N, reminiscent of the Thouless energy in mesoscopic physics, where deviations from random matrix theory are observed. Our results are a further confirmation that the Sachdev-Ye-Kitaev model is quantum chaotic for all time scales. According to recent claims in the literature, this is an expected feature in field theories with a gravity dual.
doi_str_mv 10.1103/PhysRevD.94.126010
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1336878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125311083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-74d63b23e8e481039a30368885ded1c138fb98ba39cde4581d9957ba17fae5b03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGr_gKdFz1szyX4kR2n9woJi9eApZJNZdku7uyax0H9vyqqnGZiHl3ceQi6BzgEov3ltDv4N98u5zObACgr0hExYVtKUUiZP_3eg52Tm_YbGtaCyBJiQ5XpAE5zeJrqzSWjQ7Xp76PSuNcng-gFdaNEnfX28JWttGov79BPT5zZo3CeRxu0FOav11uPsd07Jx_3d--IxXb08PC1uV6nJCghpmdmCV4yjwEzE4lJzygshRG7RggEu6kqKSnNpLGa5ACtlXlYaylpjXlE-JVdjbu9Dq7xpA5rG9F0XX1DAY1YpInQ9QrH-1zf6oDb9t-tiL8WA5TwqEzxSbKSM6713WKvBtTvtDgqoOlpVf1aVzNRolf8ARiJqwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125311083</pqid></control><display><type>article</type><title>Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model</title><source>American Physical Society Journals</source><creator>García-García, Antonio M. ; Verbaarschot, Jacobus J. M.</creator><creatorcontrib>García-García, Antonio M. ; Verbaarschot, Jacobus J. M.</creatorcontrib><description>We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the k-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth- and sixth-order energy cumulants vanish in the limit of a large number of particles N→∞, which is consistent with a Gaussian spectral density. However, for finite N, the tail of the average spectral density is well approximated by a semicircle law. The specific heat coefficient, determined numerically from the low-temperature behavior of the partition function, is consistent with the value obtained by previous analytical calculations. For energy scales of the order of the mean level spacing we show that level statistics are well described by random matrix theory. Due to the underlying Clifford algebra of the model, the universality class of the spectral correlations depends on N. For larger energy separations we identify an energy scale that grows with N, reminiscent of the Thouless energy in mesoscopic physics, where deviations from random matrix theory are observed. Our results are a further confirmation that the Sachdev-Ye-Kitaev model is quantum chaotic for all time scales. According to recent claims in the literature, this is an expected feature in field theories with a gravity dual.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.94.126010</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Density ; Mathematical models ; Matrix theory ; Mesoscopic physics ; Nuclear physics ; Partitions (mathematics) ; Thermodynamic properties</subject><ispartof>Physical review. D, 2016-12, Vol.94 (12), Article 126010</ispartof><rights>Copyright American Physical Society Dec 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-74d63b23e8e481039a30368885ded1c138fb98ba39cde4581d9957ba17fae5b03</citedby><cites>FETCH-LOGICAL-c461t-74d63b23e8e481039a30368885ded1c138fb98ba39cde4581d9957ba17fae5b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1336878$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>García-García, Antonio M.</creatorcontrib><creatorcontrib>Verbaarschot, Jacobus J. M.</creatorcontrib><title>Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model</title><title>Physical review. D</title><description>We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the k-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth- and sixth-order energy cumulants vanish in the limit of a large number of particles N→∞, which is consistent with a Gaussian spectral density. However, for finite N, the tail of the average spectral density is well approximated by a semicircle law. The specific heat coefficient, determined numerically from the low-temperature behavior of the partition function, is consistent with the value obtained by previous analytical calculations. For energy scales of the order of the mean level spacing we show that level statistics are well described by random matrix theory. Due to the underlying Clifford algebra of the model, the universality class of the spectral correlations depends on N. For larger energy separations we identify an energy scale that grows with N, reminiscent of the Thouless energy in mesoscopic physics, where deviations from random matrix theory are observed. Our results are a further confirmation that the Sachdev-Ye-Kitaev model is quantum chaotic for all time scales. According to recent claims in the literature, this is an expected feature in field theories with a gravity dual.</description><subject>Density</subject><subject>Mathematical models</subject><subject>Matrix theory</subject><subject>Mesoscopic physics</subject><subject>Nuclear physics</subject><subject>Partitions (mathematics)</subject><subject>Thermodynamic properties</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGr_gKdFz1szyX4kR2n9woJi9eApZJNZdku7uyax0H9vyqqnGZiHl3ceQi6BzgEov3ltDv4N98u5zObACgr0hExYVtKUUiZP_3eg52Tm_YbGtaCyBJiQ5XpAE5zeJrqzSWjQ7Xp76PSuNcng-gFdaNEnfX28JWttGov79BPT5zZo3CeRxu0FOav11uPsd07Jx_3d--IxXb08PC1uV6nJCghpmdmCV4yjwEzE4lJzygshRG7RggEu6kqKSnNpLGa5ACtlXlYaylpjXlE-JVdjbu9Dq7xpA5rG9F0XX1DAY1YpInQ9QrH-1zf6oDb9t-tiL8WA5TwqEzxSbKSM6713WKvBtTvtDgqoOlpVf1aVzNRolf8ARiJqwQ</recordid><startdate>20161219</startdate><enddate>20161219</enddate><creator>García-García, Antonio M.</creator><creator>Verbaarschot, Jacobus J. M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20161219</creationdate><title>Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model</title><author>García-García, Antonio M. ; Verbaarschot, Jacobus J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-74d63b23e8e481039a30368885ded1c138fb98ba39cde4581d9957ba17fae5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density</topic><topic>Mathematical models</topic><topic>Matrix theory</topic><topic>Mesoscopic physics</topic><topic>Nuclear physics</topic><topic>Partitions (mathematics)</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-García, Antonio M.</creatorcontrib><creatorcontrib>Verbaarschot, Jacobus J. M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-García, Antonio M.</au><au>Verbaarschot, Jacobus J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model</atitle><jtitle>Physical review. D</jtitle><date>2016-12-19</date><risdate>2016</risdate><volume>94</volume><issue>12</issue><artnum>126010</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the k-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth- and sixth-order energy cumulants vanish in the limit of a large number of particles N→∞, which is consistent with a Gaussian spectral density. However, for finite N, the tail of the average spectral density is well approximated by a semicircle law. The specific heat coefficient, determined numerically from the low-temperature behavior of the partition function, is consistent with the value obtained by previous analytical calculations. For energy scales of the order of the mean level spacing we show that level statistics are well described by random matrix theory. Due to the underlying Clifford algebra of the model, the universality class of the spectral correlations depends on N. For larger energy separations we identify an energy scale that grows with N, reminiscent of the Thouless energy in mesoscopic physics, where deviations from random matrix theory are observed. Our results are a further confirmation that the Sachdev-Ye-Kitaev model is quantum chaotic for all time scales. According to recent claims in the literature, this is an expected feature in field theories with a gravity dual.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.94.126010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2016-12, Vol.94 (12), Article 126010
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1336878
source American Physical Society Journals
subjects Density
Mathematical models
Matrix theory
Mesoscopic physics
Nuclear physics
Partitions (mathematics)
Thermodynamic properties
title Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20and%20thermodynamic%20properties%20of%20the%20Sachdev-Ye-Kitaev%20model&rft.jtitle=Physical%20review.%20D&rft.au=Garc%C3%ADa-Garc%C3%ADa,%20Antonio%20M.&rft.date=2016-12-19&rft.volume=94&rft.issue=12&rft.artnum=126010&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.94.126010&rft_dat=%3Cproquest_osti_%3E2125311083%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125311083&rft_id=info:pmid/&rfr_iscdi=true