Chiral solution to the Ginsparg-Wilson equation
We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the so...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2016-12, Vol.94 (11), Article 114504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physical review. D |
container_volume | 94 |
creator | Grabowska, Dorota M. Kaplan, David B. |
description | We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum. |
doi_str_mv | 10.1103/PhysRevD.94.114504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1334217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124766479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOb-gE9Fn7vdm6apeZSqUxgoovgY0iy1GbXZklTYv7el6tM9nPtxuecQcomwRIRs9dIcw6v5vlsKNhgsB3ZCZpQVkAJQcfqvEc7JIoQdDJKDKBBnZFU21qs2Ca7to3VdEl0SG5OsbRf2yn-mH7YNg20OvRr3F-SsVm0wi985J-8P92_lY7p5Xj-Vt5tUM6QxrUGg0pzTyiAog7XJCwUmB1rfVJTnwHXOKapKCZEVmlFeozZiW2motlgV2ZxcTXddiFYGbaPRjXZdZ3SUmGWM4ghdT9Deu0NvQpQ71_tu-EtSHEJzzgoxUHSitHcheFPLvbdfyh8lghwLlH8FSsHkVGD2A8JHY7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124766479</pqid></control><display><type>article</type><title>Chiral solution to the Ginsparg-Wilson equation</title><source>American Physical Society Journals</source><creator>Grabowska, Dorota M. ; Kaplan, David B.</creator><creatorcontrib>Grabowska, Dorota M. ; Kaplan, David B.</creatorcontrib><description>We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.94.114504</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Domain walls ; Fermions ; Flow equations ; Form factors ; Gradient flow</subject><ispartof>Physical review. D, 2016-12, Vol.94 (11), Article 114504</ispartof><rights>Copyright American Physical Society Dec 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</citedby><cites>FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1334217$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabowska, Dorota M.</creatorcontrib><creatorcontrib>Kaplan, David B.</creatorcontrib><title>Chiral solution to the Ginsparg-Wilson equation</title><title>Physical review. D</title><description>We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.</description><subject>Domain walls</subject><subject>Fermions</subject><subject>Flow equations</subject><subject>Form factors</subject><subject>Gradient flow</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOb-gE9Fn7vdm6apeZSqUxgoovgY0iy1GbXZklTYv7el6tM9nPtxuecQcomwRIRs9dIcw6v5vlsKNhgsB3ZCZpQVkAJQcfqvEc7JIoQdDJKDKBBnZFU21qs2Ca7to3VdEl0SG5OsbRf2yn-mH7YNg20OvRr3F-SsVm0wi985J-8P92_lY7p5Xj-Vt5tUM6QxrUGg0pzTyiAog7XJCwUmB1rfVJTnwHXOKapKCZEVmlFeozZiW2motlgV2ZxcTXddiFYGbaPRjXZdZ3SUmGWM4ghdT9Deu0NvQpQ71_tu-EtSHEJzzgoxUHSitHcheFPLvbdfyh8lghwLlH8FSsHkVGD2A8JHY7Y</recordid><startdate>20161202</startdate><enddate>20161202</enddate><creator>Grabowska, Dorota M.</creator><creator>Kaplan, David B.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20161202</creationdate><title>Chiral solution to the Ginsparg-Wilson equation</title><author>Grabowska, Dorota M. ; Kaplan, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Domain walls</topic><topic>Fermions</topic><topic>Flow equations</topic><topic>Form factors</topic><topic>Gradient flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabowska, Dorota M.</creatorcontrib><creatorcontrib>Kaplan, David B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabowska, Dorota M.</au><au>Kaplan, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral solution to the Ginsparg-Wilson equation</atitle><jtitle>Physical review. D</jtitle><date>2016-12-02</date><risdate>2016</risdate><volume>94</volume><issue>11</issue><artnum>114504</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.94.114504</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2016-12, Vol.94 (11), Article 114504 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1334217 |
source | American Physical Society Journals |
subjects | Domain walls Fermions Flow equations Form factors Gradient flow |
title | Chiral solution to the Ginsparg-Wilson equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20solution%20to%20the%20Ginsparg-Wilson%20equation&rft.jtitle=Physical%20review.%20D&rft.au=Grabowska,%20Dorota%20M.&rft.date=2016-12-02&rft.volume=94&rft.issue=11&rft.artnum=114504&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.94.114504&rft_dat=%3Cproquest_osti_%3E2124766479%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124766479&rft_id=info:pmid/&rfr_iscdi=true |