Chiral solution to the Ginsparg-Wilson equation

We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-12, Vol.94 (11), Article 114504
Hauptverfasser: Grabowska, Dorota M., Kaplan, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review. D
container_volume 94
creator Grabowska, Dorota M.
Kaplan, David B.
description We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.
doi_str_mv 10.1103/PhysRevD.94.114504
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1334217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124766479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOb-gE9Fn7vdm6apeZSqUxgoovgY0iy1GbXZklTYv7el6tM9nPtxuecQcomwRIRs9dIcw6v5vlsKNhgsB3ZCZpQVkAJQcfqvEc7JIoQdDJKDKBBnZFU21qs2Ca7to3VdEl0SG5OsbRf2yn-mH7YNg20OvRr3F-SsVm0wi985J-8P92_lY7p5Xj-Vt5tUM6QxrUGg0pzTyiAog7XJCwUmB1rfVJTnwHXOKapKCZEVmlFeozZiW2motlgV2ZxcTXddiFYGbaPRjXZdZ3SUmGWM4ghdT9Deu0NvQpQ71_tu-EtSHEJzzgoxUHSitHcheFPLvbdfyh8lghwLlH8FSsHkVGD2A8JHY7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124766479</pqid></control><display><type>article</type><title>Chiral solution to the Ginsparg-Wilson equation</title><source>American Physical Society Journals</source><creator>Grabowska, Dorota M. ; Kaplan, David B.</creator><creatorcontrib>Grabowska, Dorota M. ; Kaplan, David B.</creatorcontrib><description>We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.94.114504</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Domain walls ; Fermions ; Flow equations ; Form factors ; Gradient flow</subject><ispartof>Physical review. D, 2016-12, Vol.94 (11), Article 114504</ispartof><rights>Copyright American Physical Society Dec 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</citedby><cites>FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1334217$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabowska, Dorota M.</creatorcontrib><creatorcontrib>Kaplan, David B.</creatorcontrib><title>Chiral solution to the Ginsparg-Wilson equation</title><title>Physical review. D</title><description>We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.</description><subject>Domain walls</subject><subject>Fermions</subject><subject>Flow equations</subject><subject>Form factors</subject><subject>Gradient flow</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOb-gE9Fn7vdm6apeZSqUxgoovgY0iy1GbXZklTYv7el6tM9nPtxuecQcomwRIRs9dIcw6v5vlsKNhgsB3ZCZpQVkAJQcfqvEc7JIoQdDJKDKBBnZFU21qs2Ca7to3VdEl0SG5OsbRf2yn-mH7YNg20OvRr3F-SsVm0wi985J-8P92_lY7p5Xj-Vt5tUM6QxrUGg0pzTyiAog7XJCwUmB1rfVJTnwHXOKapKCZEVmlFeozZiW2motlgV2ZxcTXddiFYGbaPRjXZdZ3SUmGWM4ghdT9Deu0NvQpQ71_tu-EtSHEJzzgoxUHSitHcheFPLvbdfyh8lghwLlH8FSsHkVGD2A8JHY7Y</recordid><startdate>20161202</startdate><enddate>20161202</enddate><creator>Grabowska, Dorota M.</creator><creator>Kaplan, David B.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20161202</creationdate><title>Chiral solution to the Ginsparg-Wilson equation</title><author>Grabowska, Dorota M. ; Kaplan, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-f091ac662be10ae1fe57a0e502f8b26506c5621aba9937c426f1ce9dbc0bd1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Domain walls</topic><topic>Fermions</topic><topic>Flow equations</topic><topic>Form factors</topic><topic>Gradient flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabowska, Dorota M.</creatorcontrib><creatorcontrib>Kaplan, David B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabowska, Dorota M.</au><au>Kaplan, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral solution to the Ginsparg-Wilson equation</atitle><jtitle>Physical review. D</jtitle><date>2016-12-02</date><risdate>2016</risdate><volume>94</volume><issue>11</issue><artnum>114504</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.94.114504</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2016-12, Vol.94 (11), Article 114504
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1334217
source American Physical Society Journals
subjects Domain walls
Fermions
Flow equations
Form factors
Gradient flow
title Chiral solution to the Ginsparg-Wilson equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20solution%20to%20the%20Ginsparg-Wilson%20equation&rft.jtitle=Physical%20review.%20D&rft.au=Grabowska,%20Dorota%20M.&rft.date=2016-12-02&rft.volume=94&rft.issue=11&rft.artnum=114504&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.94.114504&rft_dat=%3Cproquest_osti_%3E2124766479%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124766479&rft_id=info:pmid/&rfr_iscdi=true