Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells

Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2016-08, Vol.6 (16), p.np-n/a
Hauptverfasser: Liao, Hsueh-Chung, Tam, Teck Lip Dexter, Guo, Peijun, Wu, Yilei, Manley, Eric F., Huang, Wei, Zhou, Nanjia, Soe, Chan Myae Myae, Wang, Binghao, Wasielewski, Michael R., Chen, Lin X., Kanatzidis, Mercouri G., Facchetti, Antonio, Chang, Robert P. H., Marks, Tobin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page np
container_title Advanced energy materials
container_volume 6
creator Liao, Hsueh-Chung
Tam, Teck Lip Dexter
Guo, Peijun
Wu, Yilei
Manley, Eric F.
Huang, Wei
Zhou, Nanjia
Soe, Chan Myae Myae
Wang, Binghao
Wasielewski, Michael R.
Chen, Lin X.
Kanatzidis, Mercouri G.
Facchetti, Antonio
Chang, Robert P. H.
Marks, Tobin J.
description Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs. New in‐chain donor–acceptor semiconducting copolymers are designed and synthesized as dopant‐free perovskite solar cell hole transport materials. Combining the BDT donor and the BBTa acceptor building blocks yields pBBTa‐BDT copolymers with strong interchain interactions, substantial quinoidal π‐character, preferential π‐face‐on orientation, and therefore efficient hole extraction/collection and balanced electron/hole transport. Significant enhancement of solar cell performance and environmental stability are achieved.
doi_str_mv 10.1002/aenm.201600502
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1333949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4156759861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5222-8b6b1e456aacf52e1356388781bfbf2c38dd0d04982fba1e3d2f487c92f053b03</originalsourceid><addsrcrecordid>eNqFkU1PGzEURUdVkYqAbddWu-mik_pjPPEsURIIUpJSQdWl5XGeweCxU3tCmX-P0VQR6qZv47c45-latyg-EjwhGNNvCnw3oZjUGHNM3xXHpCZVWYsKvz_sjH4ozlJ6wHmqhmDGjgs7Dzvl-_IiAqBlcIBuo_JpF2Jv_R26Dm7oICZkQkRLe3ePFsZYbcHr4Sta-Ccbg-_A98q5Ad30qs0XriGGp_Roe0A3wamIZuBcOi2OjHIJzv6-J8XPi8XtbFmuvl9ezc5XpeaU0lK0dUug4rVS2nAKhPGaCTEVpDWtoZqJ7RZvc35BTasIsC01lZjqhhrMWYvZSfFpvBtSb2XSOYa-18F70L0kjLGmajL0ZYR2MfzeQ-plZ5POMZWHsE-SCMZ5Q0jFM_r5H_Qh7KPPX8hUTicq2rBMTUZKx5BSBCN30XYqDpJg-dqQfG1IHhrKQjMKf6yD4T-0PF9s1m_dcnRt6uH54Kr4KOspm3L5a3Mp6Xz9Y75ac7lhL5Rmoyc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813584293</pqid></control><display><type>article</type><title>Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liao, Hsueh-Chung ; Tam, Teck Lip Dexter ; Guo, Peijun ; Wu, Yilei ; Manley, Eric F. ; Huang, Wei ; Zhou, Nanjia ; Soe, Chan Myae Myae ; Wang, Binghao ; Wasielewski, Michael R. ; Chen, Lin X. ; Kanatzidis, Mercouri G. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J.</creator><creatorcontrib>Liao, Hsueh-Chung ; Tam, Teck Lip Dexter ; Guo, Peijun ; Wu, Yilei ; Manley, Eric F. ; Huang, Wei ; Zhou, Nanjia ; Soe, Chan Myae Myae ; Wang, Binghao ; Wasielewski, Michael R. ; Chen, Lin X. ; Kanatzidis, Mercouri G. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><description>Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs. New in‐chain donor–acceptor semiconducting copolymers are designed and synthesized as dopant‐free perovskite solar cell hole transport materials. Combining the BDT donor and the BBTa acceptor building blocks yields pBBTa‐BDT copolymers with strong interchain interactions, substantial quinoidal π‐character, preferential π‐face‐on orientation, and therefore efficient hole extraction/collection and balanced electron/hole transport. Significant enhancement of solar cell performance and environmental stability are achieved.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201600502</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>carrier mobility ; Efficiency ; Extraction ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; polymeric hole transporting materials ; Polymers ; power-conversion-efficiencies ; Solar cells ; Stability ; Transport ; Transporting</subject><ispartof>Advanced energy materials, 2016-08, Vol.6 (16), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5222-8b6b1e456aacf52e1356388781bfbf2c38dd0d04982fba1e3d2f487c92f053b03</citedby><cites>FETCH-LOGICAL-c5222-8b6b1e456aacf52e1356388781bfbf2c38dd0d04982fba1e3d2f487c92f053b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201600502$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201600502$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1333949$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Hsueh-Chung</creatorcontrib><creatorcontrib>Tam, Teck Lip Dexter</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Wu, Yilei</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zhou, Nanjia</creatorcontrib><creatorcontrib>Soe, Chan Myae Myae</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><title>Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs. New in‐chain donor–acceptor semiconducting copolymers are designed and synthesized as dopant‐free perovskite solar cell hole transport materials. Combining the BDT donor and the BBTa acceptor building blocks yields pBBTa‐BDT copolymers with strong interchain interactions, substantial quinoidal π‐character, preferential π‐face‐on orientation, and therefore efficient hole extraction/collection and balanced electron/hole transport. Significant enhancement of solar cell performance and environmental stability are achieved.</description><subject>carrier mobility</subject><subject>Efficiency</subject><subject>Extraction</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>polymeric hole transporting materials</subject><subject>Polymers</subject><subject>power-conversion-efficiencies</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Transport</subject><subject>Transporting</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEURUdVkYqAbddWu-mik_pjPPEsURIIUpJSQdWl5XGeweCxU3tCmX-P0VQR6qZv47c45-latyg-EjwhGNNvCnw3oZjUGHNM3xXHpCZVWYsKvz_sjH4ozlJ6wHmqhmDGjgs7Dzvl-_IiAqBlcIBuo_JpF2Jv_R26Dm7oICZkQkRLe3ePFsZYbcHr4Sta-Ccbg-_A98q5Ad30qs0XriGGp_Roe0A3wamIZuBcOi2OjHIJzv6-J8XPi8XtbFmuvl9ezc5XpeaU0lK0dUug4rVS2nAKhPGaCTEVpDWtoZqJ7RZvc35BTasIsC01lZjqhhrMWYvZSfFpvBtSb2XSOYa-18F70L0kjLGmajL0ZYR2MfzeQ-plZ5POMZWHsE-SCMZ5Q0jFM_r5H_Qh7KPPX8hUTicq2rBMTUZKx5BSBCN30XYqDpJg-dqQfG1IHhrKQjMKf6yD4T-0PF9s1m_dcnRt6uH54Kr4KOspm3L5a3Mp6Xz9Y75ac7lhL5Rmoyc</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Liao, Hsueh-Chung</creator><creator>Tam, Teck Lip Dexter</creator><creator>Guo, Peijun</creator><creator>Wu, Yilei</creator><creator>Manley, Eric F.</creator><creator>Huang, Wei</creator><creator>Zhou, Nanjia</creator><creator>Soe, Chan Myae Myae</creator><creator>Wang, Binghao</creator><creator>Wasielewski, Michael R.</creator><creator>Chen, Lin X.</creator><creator>Kanatzidis, Mercouri G.</creator><creator>Facchetti, Antonio</creator><creator>Chang, Robert P. H.</creator><creator>Marks, Tobin J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160801</creationdate><title>Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells</title><author>Liao, Hsueh-Chung ; Tam, Teck Lip Dexter ; Guo, Peijun ; Wu, Yilei ; Manley, Eric F. ; Huang, Wei ; Zhou, Nanjia ; Soe, Chan Myae Myae ; Wang, Binghao ; Wasielewski, Michael R. ; Chen, Lin X. ; Kanatzidis, Mercouri G. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5222-8b6b1e456aacf52e1356388781bfbf2c38dd0d04982fba1e3d2f487c92f053b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>carrier mobility</topic><topic>Efficiency</topic><topic>Extraction</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>polymeric hole transporting materials</topic><topic>Polymers</topic><topic>power-conversion-efficiencies</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Transport</topic><topic>Transporting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Hsueh-Chung</creatorcontrib><creatorcontrib>Tam, Teck Lip Dexter</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Wu, Yilei</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zhou, Nanjia</creatorcontrib><creatorcontrib>Soe, Chan Myae Myae</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Hsueh-Chung</au><au>Tam, Teck Lip Dexter</au><au>Guo, Peijun</au><au>Wu, Yilei</au><au>Manley, Eric F.</au><au>Huang, Wei</au><au>Zhou, Nanjia</au><au>Soe, Chan Myae Myae</au><au>Wang, Binghao</au><au>Wasielewski, Michael R.</au><au>Chen, Lin X.</au><au>Kanatzidis, Mercouri G.</au><au>Facchetti, Antonio</au><au>Chang, Robert P. H.</au><au>Marks, Tobin J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>6</volume><issue>16</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs. New in‐chain donor–acceptor semiconducting copolymers are designed and synthesized as dopant‐free perovskite solar cell hole transport materials. Combining the BDT donor and the BBTa acceptor building blocks yields pBBTa‐BDT copolymers with strong interchain interactions, substantial quinoidal π‐character, preferential π‐face‐on orientation, and therefore efficient hole extraction/collection and balanced electron/hole transport. Significant enhancement of solar cell performance and environmental stability are achieved.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201600502</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2016-08, Vol.6 (16), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1333949
source Wiley Online Library Journals Frontfile Complete
subjects carrier mobility
Efficiency
Extraction
perovskite solar cells
Perovskites
Photovoltaic cells
polymeric hole transporting materials
Polymers
power-conversion-efficiencies
Solar cells
Stability
Transport
Transporting
title Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopant-Free%20Hole%20Transporting%20Polymers%20for%20High%20Efficiency,%20Environmentally%20Stable%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Liao,%20Hsueh-Chung&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-08-01&rft.volume=6&rft.issue=16&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201600502&rft_dat=%3Cproquest_osti_%3E4156759861%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813584293&rft_id=info:pmid/&rfr_iscdi=true