A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations

Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2016-12, Vol.128
Hauptverfasser: Teichert, Gregory H., Gunda, N. S. Harsha, Rudraraju, Shiva, Natarajan, Anirudh Raju, Puchala, Brian, Van der Ven, Anton, Garikipati, Krishna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Computational materials science
container_volume 128
creator Teichert, Gregory H.
Gunda, N. S. Harsha
Rudraraju, Shiva
Natarajan, Anirudh Raju
Puchala, Brian
Van der Ven, Anton
Garikipati, Krishna
description Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energy data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1332699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1332699</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_13326993</originalsourceid><addsrcrecordid>eNqNzUFLw0AQBeBFLDRa_8PgPbBJMM0eiyhCb8V72U4m7MhmZ8lsD9786bbSH-DpHd77eHemaoatq-1gm3tTWddua9u-9GvzoPplbdO7oa3Mzw5Q5uwXVkkgExxojIyh3rMWWiBL_E4ys4_g0wh4PjGC5siJYKG8kFIqvrAkveoSCDDQzHgBWcqlvFJOkINXgokpjn-P55vamNXko9LTLR_N8_vb5-tHLVr4qMiFMKCkRFiOTde1vXPdv0a_O3pS7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Teichert, Gregory H. ; Gunda, N. S. Harsha ; Rudraraju, Shiva ; Natarajan, Anirudh Raju ; Puchala, Brian ; Van der Ven, Anton ; Garikipati, Krishna</creator><creatorcontrib>Teichert, Gregory H. ; Gunda, N. S. Harsha ; Rudraraju, Shiva ; Natarajan, Anirudh Raju ; Puchala, Brian ; Van der Ven, Anton ; Garikipati, Krishna ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energy data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>free energy ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; phase transformation ; spinodal decomposition</subject><ispartof>Computational materials science, 2016-12, Vol.128</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1332699$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Teichert, Gregory H.</creatorcontrib><creatorcontrib>Gunda, N. S. Harsha</creatorcontrib><creatorcontrib>Rudraraju, Shiva</creatorcontrib><creatorcontrib>Natarajan, Anirudh Raju</creatorcontrib><creatorcontrib>Puchala, Brian</creatorcontrib><creatorcontrib>Van der Ven, Anton</creatorcontrib><creatorcontrib>Garikipati, Krishna</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations</title><title>Computational materials science</title><description>Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energy data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.</description><subject>free energy</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>phase transformation</subject><subject>spinodal decomposition</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNzUFLw0AQBeBFLDRa_8PgPbBJMM0eiyhCb8V72U4m7MhmZ8lsD9786bbSH-DpHd77eHemaoatq-1gm3tTWddua9u-9GvzoPplbdO7oa3Mzw5Q5uwXVkkgExxojIyh3rMWWiBL_E4ys4_g0wh4PjGC5siJYKG8kFIqvrAkveoSCDDQzHgBWcqlvFJOkINXgokpjn-P55vamNXko9LTLR_N8_vb5-tHLVr4qMiFMKCkRFiOTde1vXPdv0a_O3pS7Q</recordid><startdate>20161218</startdate><enddate>20161218</enddate><creator>Teichert, Gregory H.</creator><creator>Gunda, N. S. Harsha</creator><creator>Rudraraju, Shiva</creator><creator>Natarajan, Anirudh Raju</creator><creator>Puchala, Brian</creator><creator>Van der Ven, Anton</creator><creator>Garikipati, Krishna</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161218</creationdate><title>A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations</title><author>Teichert, Gregory H. ; Gunda, N. S. Harsha ; Rudraraju, Shiva ; Natarajan, Anirudh Raju ; Puchala, Brian ; Van der Ven, Anton ; Garikipati, Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_13326993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>free energy</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>phase transformation</topic><topic>spinodal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teichert, Gregory H.</creatorcontrib><creatorcontrib>Gunda, N. S. Harsha</creatorcontrib><creatorcontrib>Rudraraju, Shiva</creatorcontrib><creatorcontrib>Natarajan, Anirudh Raju</creatorcontrib><creatorcontrib>Puchala, Brian</creatorcontrib><creatorcontrib>Van der Ven, Anton</creatorcontrib><creatorcontrib>Garikipati, Krishna</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teichert, Gregory H.</au><au>Gunda, N. S. Harsha</au><au>Rudraraju, Shiva</au><au>Natarajan, Anirudh Raju</au><au>Puchala, Brian</au><au>Van der Ven, Anton</au><au>Garikipati, Krishna</au><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations</atitle><jtitle>Computational materials science</jtitle><date>2016-12-18</date><risdate>2016</risdate><volume>128</volume><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energy data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2016-12, Vol.128
issn 0927-0256
1879-0801
language eng
recordid cdi_osti_scitechconnect_1332699
source Elsevier ScienceDirect Journals Complete
subjects free energy
MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
phase transformation
spinodal decomposition
title A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20Redlich-Kister%20polynomial%20and%20cubic%20spline%20representations%20of%20the%20chemical%20potential%20in%20phase%20field%20computations&rft.jtitle=Computational%20materials%20science&rft.au=Teichert,%20Gregory%20H.&rft.aucorp=Univ.%20of%20Michigan,%20Ann%20Arbor,%20MI%20(United%20States)&rft.date=2016-12-18&rft.volume=128&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/&rft_dat=%3Costi%3E1332699%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true