A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine
We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperatu...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2017-01, Vol.98 (C), p.63-86 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | C |
container_start_page | 63 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 98 |
creator | Luscher, D.J. Addessio, F.L. Cawkwell, M.J. Ramos, K.J. |
description | We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions.
This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX. |
doi_str_mv | 10.1016/j.jmps.2016.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1329599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509616305245</els_id><sourcerecordid>1938549953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-11efe652db48848868ac3b136a69e72dcfe9a84ed32ae4f67d4153404f9a98743</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVpodMkL9CVaNd29OM_QTch9A8C3TRroZGuO3JtydXVFLzsI-VF-kyVma4DgivBdy7n6BDylrOaM97dTvW0rFiLcq-ZqhlrX5ADH3pZNf0gXpIDY0JULVPda_IGcWKFYD0_kD931HmcozXZx0AdBPR5q44GwVEbQ_bhfF7oEh3MNI40n4Ca4DHmFFdvKZ6i_UkT4BoDwk6gDz9moDZtmM1M_z5VdrNz4f0C-bTNEICWR_A5mcUHuCavRjMj3PyfV-Tx08fv91-qh2-fv97fPVRWKpUrzmGErhXu2AxDOd1grDxy2ZlOQS-cHUGZoQEnhYFm7HrX8FY2rBmVUUPfyCvy7rI3YvYarc9gTyVhAJs1l0K1ShXo_QVaU_x1Bsx6iucUii_NlRzaRqlWFkpcKJsiYoJRryWdSZvmTO996Envfei9D82ULr9dRB8uIighf3tIuwcIFpxPuwUX_XPyfxaQl5c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938549953</pqid></control><display><type>article</type><title>A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luscher, D.J. ; Addessio, F.L. ; Cawkwell, M.J. ; Ramos, K.J.</creator><creatorcontrib>Luscher, D.J. ; Addessio, F.L. ; Cawkwell, M.J. ; Ramos, K.J. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions.
This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2016.09.005</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Computer simulation ; Crystal plasticity ; crystal plasticity dislocations RDX shock loading ; Crystallography ; Deformation ; Density ; Differential equations ; Dislocation density ; Dislocations ; Drag ; Elastic properties ; Free energy ; MATERIALS SCIENCE ; Parameterization ; Plastic properties ; Plastics ; RDX ; Shock loading ; Single crystals ; Slip ; Trinitramine ; Velocimetry ; Velocity measurement</subject><ispartof>Journal of the mechanics and physics of solids, 2017-01, Vol.98 (C), p.63-86</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-11efe652db48848868ac3b136a69e72dcfe9a84ed32ae4f67d4153404f9a98743</citedby><cites>FETCH-LOGICAL-c399t-11efe652db48848868ac3b136a69e72dcfe9a84ed32ae4f67d4153404f9a98743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509616305245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1329599$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luscher, D.J.</creatorcontrib><creatorcontrib>Addessio, F.L.</creatorcontrib><creatorcontrib>Cawkwell, M.J.</creatorcontrib><creatorcontrib>Ramos, K.J.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine</title><title>Journal of the mechanics and physics of solids</title><description>We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions.
This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.</description><subject>Computer simulation</subject><subject>Crystal plasticity</subject><subject>crystal plasticity dislocations RDX shock loading</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Density</subject><subject>Differential equations</subject><subject>Dislocation density</subject><subject>Dislocations</subject><subject>Drag</subject><subject>Elastic properties</subject><subject>Free energy</subject><subject>MATERIALS SCIENCE</subject><subject>Parameterization</subject><subject>Plastic properties</subject><subject>Plastics</subject><subject>RDX</subject><subject>Shock loading</subject><subject>Single crystals</subject><subject>Slip</subject><subject>Trinitramine</subject><subject>Velocimetry</subject><subject>Velocity measurement</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAUhUVpodMkL9CVaNd29OM_QTch9A8C3TRroZGuO3JtydXVFLzsI-VF-kyVma4DgivBdy7n6BDylrOaM97dTvW0rFiLcq-ZqhlrX5ADH3pZNf0gXpIDY0JULVPda_IGcWKFYD0_kD931HmcozXZx0AdBPR5q44GwVEbQ_bhfF7oEh3MNI40n4Ca4DHmFFdvKZ6i_UkT4BoDwk6gDz9moDZtmM1M_z5VdrNz4f0C-bTNEICWR_A5mcUHuCavRjMj3PyfV-Tx08fv91-qh2-fv97fPVRWKpUrzmGErhXu2AxDOd1grDxy2ZlOQS-cHUGZoQEnhYFm7HrX8FY2rBmVUUPfyCvy7rI3YvYarc9gTyVhAJs1l0K1ShXo_QVaU_x1Bsx6iucUii_NlRzaRqlWFkpcKJsiYoJRryWdSZvmTO996Envfei9D82ULr9dRB8uIighf3tIuwcIFpxPuwUX_XPyfxaQl5c</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Luscher, D.J.</creator><creator>Addessio, F.L.</creator><creator>Cawkwell, M.J.</creator><creator>Ramos, K.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201701</creationdate><title>A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine</title><author>Luscher, D.J. ; Addessio, F.L. ; Cawkwell, M.J. ; Ramos, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-11efe652db48848868ac3b136a69e72dcfe9a84ed32ae4f67d4153404f9a98743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Crystal plasticity</topic><topic>crystal plasticity dislocations RDX shock loading</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Density</topic><topic>Differential equations</topic><topic>Dislocation density</topic><topic>Dislocations</topic><topic>Drag</topic><topic>Elastic properties</topic><topic>Free energy</topic><topic>MATERIALS SCIENCE</topic><topic>Parameterization</topic><topic>Plastic properties</topic><topic>Plastics</topic><topic>RDX</topic><topic>Shock loading</topic><topic>Single crystals</topic><topic>Slip</topic><topic>Trinitramine</topic><topic>Velocimetry</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luscher, D.J.</creatorcontrib><creatorcontrib>Addessio, F.L.</creatorcontrib><creatorcontrib>Cawkwell, M.J.</creatorcontrib><creatorcontrib>Ramos, K.J.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luscher, D.J.</au><au>Addessio, F.L.</au><au>Cawkwell, M.J.</au><au>Ramos, K.J.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2017-01</date><risdate>2017</risdate><volume>98</volume><issue>C</issue><spage>63</spage><epage>86</epage><pages>63-86</pages><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions.
This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2016.09.005</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2017-01, Vol.98 (C), p.63-86 |
issn | 0022-5096 1873-4782 |
language | eng |
recordid | cdi_osti_scitechconnect_1329599 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computer simulation Crystal plasticity crystal plasticity dislocations RDX shock loading Crystallography Deformation Density Differential equations Dislocation density Dislocations Drag Elastic properties Free energy MATERIALS SCIENCE Parameterization Plastic properties Plastics RDX Shock loading Single crystals Slip Trinitramine Velocimetry Velocity measurement |
title | A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dislocation%20density-based%20continuum%20model%20of%20the%20anisotropic%20shock%20response%20of%20single%20crystal%20%CE%B1-cyclotrimethylene%20trinitramine&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Luscher,%20D.J.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2017-01&rft.volume=98&rft.issue=C&rft.spage=63&rft.epage=86&rft.pages=63-86&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2016.09.005&rft_dat=%3Cproquest_osti_%3E1938549953%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938549953&rft_id=info:pmid/&rft_els_id=S0022509616305245&rfr_iscdi=true |