Bayesian Abel Inversion in Quantitative X-Ray Radiography

A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2016-01, Vol.38 (3), p.B396-B413
Hauptverfasser: Howard, Marylesa, Fowler, Michael, Luttman, Aaron, Mitchell, Stephen E., Hock, Margaret C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page B413
container_issue 3
container_start_page B396
container_title SIAM journal on scientific computing
container_volume 38
creator Howard, Marylesa
Fowler, Michael
Luttman, Aaron
Mitchell, Stephen E.
Hock, Margaret C.
description A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type and scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.
doi_str_mv 10.1137/15M1018721
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1329259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1137_15M1018721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f9bec88e7afef02ccfa1bce22640d4971e1e6baf9b4670c1a847ba02ddc41a023</originalsourceid><addsrcrecordid>eNpFkE9LwzAYh4MoOKcXP0HwKFTzpmnTHOfwz2AiDgVv5W36xkVmOpo46Le3Y4Kn53d4-B0exi5B3ADk-haKZxBQaQlHbALCFJkGo4_3u1RZJXVxys5i_BICSmXkhJk7HCh6DHzW0IYvwo766LvAfeCvPxiST5j8jvhHtsKBr7D13WeP2_Vwzk4cbiJd_HHK3h_u3-ZP2fLlcTGfLTMrjUqZMw3ZqiKNjpyQ1jqExpKUpRKtMhoIqGxw1FSphQWslG5QyLa1CkbmU3Z1-O1i8nW0PpFd2y4EsqmGXBpZmFG6Pki272LsydXb3n9jP9Qg6n2Z-r9M_gsbKFVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Abel Inversion in Quantitative X-Ray Radiography</title><source>SIAM Journals Online</source><creator>Howard, Marylesa ; Fowler, Michael ; Luttman, Aaron ; Mitchell, Stephen E. ; Hock, Margaret C.</creator><creatorcontrib>Howard, Marylesa ; Fowler, Michael ; Luttman, Aaron ; Mitchell, Stephen E. ; Hock, Margaret C. ; Nevada Test Site/National Security Technologies, LLC, Las Vegas, NV (United States) ; Nevada Test Site (NTS), Mercury, NV (United States)</creatorcontrib><description>A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type and scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/15M1018721</identifier><language>eng</language><publisher>United States: SIAM</publisher><subject>Bayesian Inference ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Inverse Problems ; Markov Chain Monte Carlo ; Maximum Likelihood Estimation ; X-ray Radiography</subject><ispartof>SIAM journal on scientific computing, 2016-01, Vol.38 (3), p.B396-B413</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-f9bec88e7afef02ccfa1bce22640d4971e1e6baf9b4670c1a847ba02ddc41a023</citedby><cites>FETCH-LOGICAL-c294t-f9bec88e7afef02ccfa1bce22640d4971e1e6baf9b4670c1a847ba02ddc41a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3171,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1329259$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, Marylesa</creatorcontrib><creatorcontrib>Fowler, Michael</creatorcontrib><creatorcontrib>Luttman, Aaron</creatorcontrib><creatorcontrib>Mitchell, Stephen E.</creatorcontrib><creatorcontrib>Hock, Margaret C.</creatorcontrib><creatorcontrib>Nevada Test Site/National Security Technologies, LLC, Las Vegas, NV (United States)</creatorcontrib><creatorcontrib>Nevada Test Site (NTS), Mercury, NV (United States)</creatorcontrib><title>Bayesian Abel Inversion in Quantitative X-Ray Radiography</title><title>SIAM journal on scientific computing</title><description>A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type and scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.</description><subject>Bayesian Inference</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Inverse Problems</subject><subject>Markov Chain Monte Carlo</subject><subject>Maximum Likelihood Estimation</subject><subject>X-ray Radiography</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LwzAYh4MoOKcXP0HwKFTzpmnTHOfwz2AiDgVv5W36xkVmOpo46Le3Y4Kn53d4-B0exi5B3ADk-haKZxBQaQlHbALCFJkGo4_3u1RZJXVxys5i_BICSmXkhJk7HCh6DHzW0IYvwo766LvAfeCvPxiST5j8jvhHtsKBr7D13WeP2_Vwzk4cbiJd_HHK3h_u3-ZP2fLlcTGfLTMrjUqZMw3ZqiKNjpyQ1jqExpKUpRKtMhoIqGxw1FSphQWslG5QyLa1CkbmU3Z1-O1i8nW0PpFd2y4EsqmGXBpZmFG6Pki272LsydXb3n9jP9Qg6n2Z-r9M_gsbKFVc</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Howard, Marylesa</creator><creator>Fowler, Michael</creator><creator>Luttman, Aaron</creator><creator>Mitchell, Stephen E.</creator><creator>Hock, Margaret C.</creator><general>SIAM</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160101</creationdate><title>Bayesian Abel Inversion in Quantitative X-Ray Radiography</title><author>Howard, Marylesa ; Fowler, Michael ; Luttman, Aaron ; Mitchell, Stephen E. ; Hock, Margaret C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f9bec88e7afef02ccfa1bce22640d4971e1e6baf9b4670c1a847ba02ddc41a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayesian Inference</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Inverse Problems</topic><topic>Markov Chain Monte Carlo</topic><topic>Maximum Likelihood Estimation</topic><topic>X-ray Radiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Marylesa</creatorcontrib><creatorcontrib>Fowler, Michael</creatorcontrib><creatorcontrib>Luttman, Aaron</creatorcontrib><creatorcontrib>Mitchell, Stephen E.</creatorcontrib><creatorcontrib>Hock, Margaret C.</creatorcontrib><creatorcontrib>Nevada Test Site/National Security Technologies, LLC, Las Vegas, NV (United States)</creatorcontrib><creatorcontrib>Nevada Test Site (NTS), Mercury, NV (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Marylesa</au><au>Fowler, Michael</au><au>Luttman, Aaron</au><au>Mitchell, Stephen E.</au><au>Hock, Margaret C.</au><aucorp>Nevada Test Site/National Security Technologies, LLC, Las Vegas, NV (United States)</aucorp><aucorp>Nevada Test Site (NTS), Mercury, NV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Abel Inversion in Quantitative X-Ray Radiography</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>38</volume><issue>3</issue><spage>B396</spage><epage>B413</epage><pages>B396-B413</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type and scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.</abstract><cop>United States</cop><pub>SIAM</pub><doi>10.1137/15M1018721</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2016-01, Vol.38 (3), p.B396-B413
issn 1064-8275
1095-7197
language eng
recordid cdi_osti_scitechconnect_1329259
source SIAM Journals Online
subjects Bayesian Inference
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Inverse Problems
Markov Chain Monte Carlo
Maximum Likelihood Estimation
X-ray Radiography
title Bayesian Abel Inversion in Quantitative X-Ray Radiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Abel%20Inversion%20in%20Quantitative%20X-Ray%20Radiography&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Howard,%20Marylesa&rft.aucorp=Nevada%20Test%20Site/National%20Security%20Technologies,%20LLC,%20Las%20Vegas,%20NV%20(United%20States)&rft.date=2016-01-01&rft.volume=38&rft.issue=3&rft.spage=B396&rft.epage=B413&rft.pages=B396-B413&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/15M1018721&rft_dat=%3Ccrossref_osti_%3E10_1137_15M1018721%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true