Automated transient identification in the Dark Energy Survey

We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2015-08, Vol.150 (3)
Hauptverfasser: Goldstein, D. A., D’Andrea, C. B., Fischer, J. A., Foley, R. J., Gupta, R. R., Kessler, R., Kim, A. G., Nichol, R. C., Nugent, P. E., Papadopoulos, A., Sako, M., Smith, M., Sullivan, M., Thomas, R. C., Wester, W., Wolf, R. C., Abdalla, F. B., Banerji, M., Benoit-Lévy, A., Bertin, E., Brooks, D., Rosell, A. Carnero, Castander, F. J., Costa, L. N. da, Covarrubias, R., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Neto, A. Fausti, Finley, D. A., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D., Gruen, D., Gruendl, R. A., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Maia, M. A. G., Makler, M., March, M., Marshall, J. L., Martini, P., Merritt, K. W., Miquel, R., Nord, B., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Walker, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.
ISSN:1538-3881
1538-3881