Multilevel Monte Carlo simulation of Coulomb collisions

We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-10, Vol.274 (C), p.140-157
Hauptverfasser: Rosin, M.S., Ricketson, L.F., Dimits, A.M., Caflisch, R.E., Cohen, B.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue C
container_start_page 140
container_title Journal of computational physics
container_volume 274
creator Rosin, M.S.
Ricketson, L.F.
Dimits, A.M.
Caflisch, R.E.
Cohen, B.I.
description We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε−2) or O(ε−2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε−3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10−5. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
doi_str_mv 10.1016/j.jcp.2014.05.030
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1297655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999114003933</els_id><sourcerecordid>1678006550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-7866848d06df1a005aa5e19b83e4e318a59ec259b0c48deec7856ff9337d10c83</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMoOI7-AHfFlZvWl6ZpE1xJ8QtmcKPrkElfMSVtxqYd8N-boa7F1YPHuZfLIeSaQkaBlndd1pl9lgMtMuAZMDghKwoS0ryi5SlZAeQ0lVLSc3IRQgcAghdiRart7Cbr8IAu2fphwqTWo_NJsP3s9GT9kPg2qf3sfL9LjHfOhvgMl-Ss1S7g1e9dk4-nx_f6Jd28Pb_WD5vUFIxNaSXKUhSigbJpqQbgWnOkcicYFsio0FyiybncgYkUoqkEL9tWMlY1FIxga3Kz9PowWRWMndB8Gj8MaCZFc1mVnEfodoH2o_-aMUyqt8Ggc3pAPwdFy0oARBL-gUaHwESVR5QuqBl9CCO2aj_aXo_fioI6SleditLVUboCrqL0mLlfMhidHCyOx8k4GGzseFzcePtH-gdHQogE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620103872</pqid></control><display><type>article</type><title>Multilevel Monte Carlo simulation of Coulomb collisions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rosin, M.S. ; Ricketson, L.F. ; Dimits, A.M. ; Caflisch, R.E. ; Cohen, B.I.</creator><creatorcontrib>Rosin, M.S. ; Ricketson, L.F. ; Dimits, A.M. ; Caflisch, R.E. ; Cohen, B.I. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε−2) or O(ε−2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε−3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10−5. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.05.030</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>70 PLASMA PHYSICS AND FUSION ; Computation ; Computer simulation ; Coulomb collisions ; Discretization ; Mathematical analysis ; Mathematical models ; MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Monte Carlo ; Monte Carlo methods ; Multilevel ; Multilevel Monte Carlo ; Particle in cell ; Plasma</subject><ispartof>Journal of computational physics, 2014-10, Vol.274 (C), p.140-157</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-7866848d06df1a005aa5e19b83e4e318a59ec259b0c48deec7856ff9337d10c83</citedby><cites>FETCH-LOGICAL-c433t-7866848d06df1a005aa5e19b83e4e318a59ec259b0c48deec7856ff9337d10c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2014.05.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1297655$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosin, M.S.</creatorcontrib><creatorcontrib>Ricketson, L.F.</creatorcontrib><creatorcontrib>Dimits, A.M.</creatorcontrib><creatorcontrib>Caflisch, R.E.</creatorcontrib><creatorcontrib>Cohen, B.I.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Multilevel Monte Carlo simulation of Coulomb collisions</title><title>Journal of computational physics</title><description>We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε−2) or O(ε−2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε−3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10−5. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.</description><subject>70 PLASMA PHYSICS AND FUSION</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Coulomb collisions</subject><subject>Discretization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Monte Carlo</subject><subject>Monte Carlo methods</subject><subject>Multilevel</subject><subject>Multilevel Monte Carlo</subject><subject>Particle in cell</subject><subject>Plasma</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAURYMoOI7-AHfFlZvWl6ZpE1xJ8QtmcKPrkElfMSVtxqYd8N-boa7F1YPHuZfLIeSaQkaBlndd1pl9lgMtMuAZMDghKwoS0ryi5SlZAeQ0lVLSc3IRQgcAghdiRart7Cbr8IAu2fphwqTWo_NJsP3s9GT9kPg2qf3sfL9LjHfOhvgMl-Ss1S7g1e9dk4-nx_f6Jd28Pb_WD5vUFIxNaSXKUhSigbJpqQbgWnOkcicYFsio0FyiybncgYkUoqkEL9tWMlY1FIxga3Kz9PowWRWMndB8Gj8MaCZFc1mVnEfodoH2o_-aMUyqt8Ggc3pAPwdFy0oARBL-gUaHwESVR5QuqBl9CCO2aj_aXo_fioI6SleditLVUboCrqL0mLlfMhidHCyOx8k4GGzseFzcePtH-gdHQogE</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Rosin, M.S.</creator><creator>Ricketson, L.F.</creator><creator>Dimits, A.M.</creator><creator>Caflisch, R.E.</creator><creator>Cohen, B.I.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20141001</creationdate><title>Multilevel Monte Carlo simulation of Coulomb collisions</title><author>Rosin, M.S. ; Ricketson, L.F. ; Dimits, A.M. ; Caflisch, R.E. ; Cohen, B.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-7866848d06df1a005aa5e19b83e4e318a59ec259b0c48deec7856ff9337d10c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>70 PLASMA PHYSICS AND FUSION</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Coulomb collisions</topic><topic>Discretization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Monte Carlo</topic><topic>Monte Carlo methods</topic><topic>Multilevel</topic><topic>Multilevel Monte Carlo</topic><topic>Particle in cell</topic><topic>Plasma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosin, M.S.</creatorcontrib><creatorcontrib>Ricketson, L.F.</creatorcontrib><creatorcontrib>Dimits, A.M.</creatorcontrib><creatorcontrib>Caflisch, R.E.</creatorcontrib><creatorcontrib>Cohen, B.I.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosin, M.S.</au><au>Ricketson, L.F.</au><au>Dimits, A.M.</au><au>Caflisch, R.E.</au><au>Cohen, B.I.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel Monte Carlo simulation of Coulomb collisions</atitle><jtitle>Journal of computational physics</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>274</volume><issue>C</issue><spage>140</spage><epage>157</epage><pages>140-157</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε−2) or O(ε−2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε−3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10−5. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.05.030</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2014-10, Vol.274 (C), p.140-157
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1297655
source ScienceDirect Journals (5 years ago - present)
subjects 70 PLASMA PHYSICS AND FUSION
Computation
Computer simulation
Coulomb collisions
Discretization
Mathematical analysis
Mathematical models
MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Monte Carlo
Monte Carlo methods
Multilevel
Multilevel Monte Carlo
Particle in cell
Plasma
title Multilevel Monte Carlo simulation of Coulomb collisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20Monte%20Carlo%20simulation%20of%20Coulomb%20collisions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Rosin,%20M.S.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2014-10-01&rft.volume=274&rft.issue=C&rft.spage=140&rft.epage=157&rft.pages=140-157&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.05.030&rft_dat=%3Cproquest_osti_%3E1678006550%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620103872&rft_id=info:pmid/&rft_els_id=S0021999114003933&rfr_iscdi=true