signaling phospholipid PIP₃ creates a new interaction surface on the nuclear receptor SF-1
Significance We previously reported that lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP ₂ and PIP ₃ bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIP ₙ he...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (42), p.15054-15059 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15059 |
---|---|
container_issue | 42 |
container_start_page | 15054 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Blind, Raymond D. Sablin, Elena P. Kuchenbecker, Kristopher M. Chiu, Hsiu-Ju Deacon, Ashley M. Das, Debanu Fletterick, Robert J. Ingraham, Holly A. |
description | Significance We previously reported that lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP ₂ and PIP ₃ bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIP ₙ headgroups. We find that stabilization by the PIP ₃ ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP ₃ increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. We propose that this new surface acts as a PIP ₃-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.
The signaling phosphatidylinositol lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP ₂ and PIP ₃ show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP ₃ stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As. |
doi_str_mv | 10.1073/pnas.1416740111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1295339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43189877</jstor_id><sourcerecordid>43189877</sourcerecordid><originalsourceid>FETCH-LOGICAL-f364t-7e5d9169ce9e683b79fab6dc3209c7d74b547bd47b245792a858c29889a383a3</originalsourceid><addsrcrecordid>eNpVkU-LFDEQxYMo7rh69qQGT156zd9OclmQxdWFBRd2vQkhna6ZydKTtEla8arf1E9iYMZBD0UVvB-vHlUIPafkjBLF387RlTMqaK8EoZQ-QCtKDO16YchDtCKEqU4LJk7Qk1LuCSFGavIYnTDJtFaKrtCXEjbRTSFu8LxNpdUU5jDim6ub3z9_YZ_BVSjY4QjfcYgVsvM1pIjLktfOA25j3QKOi5_AZZzBw1xTxreXHX2KHq3dVODZoZ-iu8v3dxcfu-tPH64u3l13a96L2imQo6G98WCg13xQZu2GfvScEePVqMQghRrGVkxIZZjTUntmtDaOa-74KTrf287LsIPRQ6zZTXbOYefyD5tcsP8rMWztJn2zglHCNGsGr_cGqdRgiw8V_NanGMFXS5mRnJsGvTlsyenrAqXaXSgepslFSEuxtKdSCUmkbujLfwMdk_w9ewPwAWj_O8rtgS2Spc1DNOTFHrkv7ZxHRnCqTfNo-qu9vnbJuk0OxX6-ZYT2hFCuJWP8D4T3ows</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1615745058</pqid></control><display><type>article</type><title>signaling phospholipid PIP₃ creates a new interaction surface on the nuclear receptor SF-1</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Blind, Raymond D. ; Sablin, Elena P. ; Kuchenbecker, Kristopher M. ; Chiu, Hsiu-Ju ; Deacon, Ashley M. ; Das, Debanu ; Fletterick, Robert J. ; Ingraham, Holly A.</creator><creatorcontrib>Blind, Raymond D. ; Sablin, Elena P. ; Kuchenbecker, Kristopher M. ; Chiu, Hsiu-Ju ; Deacon, Ashley M. ; Das, Debanu ; Fletterick, Robert J. ; Ingraham, Holly A. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Significance We previously reported that lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP ₂ and PIP ₃ bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIP ₙ headgroups. We find that stabilization by the PIP ₃ ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP ₃ increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. We propose that this new surface acts as a PIP ₃-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.
The signaling phosphatidylinositol lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP ₂ and PIP ₃ show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP ₃ stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1416740111</identifier><identifier>PMID: 25288771</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acids - chemistry ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Biological Transport ; Cell Nucleus - metabolism ; Chromatography ; Computer Simulation ; Crystal structure ; crystallography ; Crystallography, X-Ray ; Electrons ; Hormones ; Humans ; ligand dependent ; Ligands ; lipid transport ; Lipids ; Lipids - chemistry ; Mice ; Models, Molecular ; Molecular Conformation ; Mutation ; Mutation, Missense ; Nuclear receptors ; nucleus ; Peptides - chemistry ; Phosphatidylinositols ; Phosphatidylinositols - chemistry ; Phospholipids ; Receptors ; Signal Transduction ; Solvents ; Solvents - chemistry ; Steroidogenic Factor 1 - chemistry ; Surface Plasmon Resonance ; Surface Properties ; Swiss 3T3 cells ; Temperature ; transcription ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15054-15059</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43189877$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43189877$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1295339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blind, Raymond D.</creatorcontrib><creatorcontrib>Sablin, Elena P.</creatorcontrib><creatorcontrib>Kuchenbecker, Kristopher M.</creatorcontrib><creatorcontrib>Chiu, Hsiu-Ju</creatorcontrib><creatorcontrib>Deacon, Ashley M.</creatorcontrib><creatorcontrib>Das, Debanu</creatorcontrib><creatorcontrib>Fletterick, Robert J.</creatorcontrib><creatorcontrib>Ingraham, Holly A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>signaling phospholipid PIP₃ creates a new interaction surface on the nuclear receptor SF-1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance We previously reported that lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP ₂ and PIP ₃ bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIP ₙ headgroups. We find that stabilization by the PIP ₃ ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP ₃ increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. We propose that this new surface acts as a PIP ₃-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.
The signaling phosphatidylinositol lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP ₂ and PIP ₃ show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP ₃ stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As.</description><subject>Amino Acids - chemistry</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatography</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Electrons</subject><subject>Hormones</subject><subject>Humans</subject><subject>ligand dependent</subject><subject>Ligands</subject><subject>lipid transport</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Nuclear receptors</subject><subject>nucleus</subject><subject>Peptides - chemistry</subject><subject>Phosphatidylinositols</subject><subject>Phosphatidylinositols - chemistry</subject><subject>Phospholipids</subject><subject>Receptors</subject><subject>Signal Transduction</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Steroidogenic Factor 1 - chemistry</subject><subject>Surface Plasmon Resonance</subject><subject>Surface Properties</subject><subject>Swiss 3T3 cells</subject><subject>Temperature</subject><subject>transcription</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU-LFDEQxYMo7rh69qQGT156zd9OclmQxdWFBRd2vQkhna6ZydKTtEla8arf1E9iYMZBD0UVvB-vHlUIPafkjBLF387RlTMqaK8EoZQ-QCtKDO16YchDtCKEqU4LJk7Qk1LuCSFGavIYnTDJtFaKrtCXEjbRTSFu8LxNpdUU5jDim6ub3z9_YZ_BVSjY4QjfcYgVsvM1pIjLktfOA25j3QKOi5_AZZzBw1xTxreXHX2KHq3dVODZoZ-iu8v3dxcfu-tPH64u3l13a96L2imQo6G98WCg13xQZu2GfvScEePVqMQghRrGVkxIZZjTUntmtDaOa-74KTrf287LsIPRQ6zZTXbOYefyD5tcsP8rMWztJn2zglHCNGsGr_cGqdRgiw8V_NanGMFXS5mRnJsGvTlsyenrAqXaXSgepslFSEuxtKdSCUmkbujLfwMdk_w9ewPwAWj_O8rtgS2Spc1DNOTFHrkv7ZxHRnCqTfNo-qu9vnbJuk0OxX6-ZYT2hFCuJWP8D4T3ows</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Blind, Raymond D.</creator><creator>Sablin, Elena P.</creator><creator>Kuchenbecker, Kristopher M.</creator><creator>Chiu, Hsiu-Ju</creator><creator>Deacon, Ashley M.</creator><creator>Das, Debanu</creator><creator>Fletterick, Robert J.</creator><creator>Ingraham, Holly A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>signaling phospholipid PIP₃ creates a new interaction surface on the nuclear receptor SF-1</title><author>Blind, Raymond D. ; Sablin, Elena P. ; Kuchenbecker, Kristopher M. ; Chiu, Hsiu-Ju ; Deacon, Ashley M. ; Das, Debanu ; Fletterick, Robert J. ; Ingraham, Holly A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f364t-7e5d9169ce9e683b79fab6dc3209c7d74b547bd47b245792a858c29889a383a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acids - chemistry</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatography</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Electrons</topic><topic>Hormones</topic><topic>Humans</topic><topic>ligand dependent</topic><topic>Ligands</topic><topic>lipid transport</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Nuclear receptors</topic><topic>nucleus</topic><topic>Peptides - chemistry</topic><topic>Phosphatidylinositols</topic><topic>Phosphatidylinositols - chemistry</topic><topic>Phospholipids</topic><topic>Receptors</topic><topic>Signal Transduction</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Steroidogenic Factor 1 - chemistry</topic><topic>Surface Plasmon Resonance</topic><topic>Surface Properties</topic><topic>Swiss 3T3 cells</topic><topic>Temperature</topic><topic>transcription</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blind, Raymond D.</creatorcontrib><creatorcontrib>Sablin, Elena P.</creatorcontrib><creatorcontrib>Kuchenbecker, Kristopher M.</creatorcontrib><creatorcontrib>Chiu, Hsiu-Ju</creatorcontrib><creatorcontrib>Deacon, Ashley M.</creatorcontrib><creatorcontrib>Das, Debanu</creatorcontrib><creatorcontrib>Fletterick, Robert J.</creatorcontrib><creatorcontrib>Ingraham, Holly A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blind, Raymond D.</au><au>Sablin, Elena P.</au><au>Kuchenbecker, Kristopher M.</au><au>Chiu, Hsiu-Ju</au><au>Deacon, Ashley M.</au><au>Das, Debanu</au><au>Fletterick, Robert J.</au><au>Ingraham, Holly A.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>signaling phospholipid PIP₃ creates a new interaction surface on the nuclear receptor SF-1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>111</volume><issue>42</issue><spage>15054</spage><epage>15059</epage><pages>15054-15059</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance We previously reported that lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP ₂ and PIP ₃ bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIP ₙ headgroups. We find that stabilization by the PIP ₃ ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP ₃ increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. We propose that this new surface acts as a PIP ₃-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.
The signaling phosphatidylinositol lipids PI(4,5)P ₂ (PIP ₂) and PI(3,4,5)P ₃ (PIP ₃) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP ₂ and PIP ₃ show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP ₃ stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288771</pmid><doi>10.1073/pnas.1416740111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15054-15059 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_osti_scitechconnect_1295339 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acids - chemistry Animals BASIC BIOLOGICAL SCIENCES Biological Sciences Biological Transport Cell Nucleus - metabolism Chromatography Computer Simulation Crystal structure crystallography Crystallography, X-Ray Electrons Hormones Humans ligand dependent Ligands lipid transport Lipids Lipids - chemistry Mice Models, Molecular Molecular Conformation Mutation Mutation, Missense Nuclear receptors nucleus Peptides - chemistry Phosphatidylinositols Phosphatidylinositols - chemistry Phospholipids Receptors Signal Transduction Solvents Solvents - chemistry Steroidogenic Factor 1 - chemistry Surface Plasmon Resonance Surface Properties Swiss 3T3 cells Temperature transcription Water - chemistry |
title | signaling phospholipid PIP₃ creates a new interaction surface on the nuclear receptor SF-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=signaling%20phospholipid%20PIP%E2%82%83%20creates%20a%20new%20interaction%20surface%20on%20the%20nuclear%20receptor%20SF-1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Blind,%20Raymond%20D.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2014-10-21&rft.volume=111&rft.issue=42&rft.spage=15054&rft.epage=15059&rft.pages=15054-15059&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1416740111&rft_dat=%3Cjstor_osti_%3E43189877%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1615745058&rft_id=info:pmid/25288771&rft_jstor_id=43189877&rfr_iscdi=true |