Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup
We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition...
Gespeichert in:
Veröffentlicht in: | Langmuir 2015-12, Vol.31 (50), p.13609-13617 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13617 |
---|---|
container_issue | 50 |
container_start_page | 13609 |
container_title | Langmuir |
container_volume | 31 |
creator | Hartnett, C. A Mahady, K Fowlkes, J. D Afkhami, S Kondic, L Rack, P. D |
description | We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects. |
doi_str_mv | 10.1021/acs.langmuir.5b03598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1267054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751488251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</originalsourceid><addsrcrecordid>eNp9kU9vFCEYh4nR2LX6DYwhnrzMyp9hmPFmV6tNtnqwngnDvFQqA1NgDo1fXja79eiJBJ7fj7zvg9BrSraUMPpem7z1OtzOq0tbMRIuhv4J2lDBSCN6Jp-iDZEtb2Tb8TP0Iuc7QsjA2-E5OmOdGISgwwb9uQq56NF5Vx5wtPibDrHBOkz42pkUs9Ee8N7dr67eQNEeXzqvZwglf8A3SYfsiosB2xRn_MOF24p_SnHxUPAueq-XDLhEfL364qbTw0UC_XtdXqJnVvsMr07nOfp5-flm97XZf_9ytfu4b3RLWWkMZR1Ixntu287yDkTHRhCTJT1Mo-mllkRyPlELHbcA1loOI0xksEZq2_Nz9PbYG3NxKhtXwPwyMQQwRdVySURboXdHaEnxfoVc1OyygTpBgLhmRaWgbd8zQSvaHtHDgnICq5bkZp0eFCXq4EZVN-rRjTq5qbE3px_WcYbpX-hRRgXIETjE7-KaQt3K_zv_AvkfoO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751488251</pqid></control><display><type>article</type><title>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</title><source>ACS Publications</source><creator>Hartnett, C. A ; Mahady, K ; Fowlkes, J. D ; Afkhami, S ; Kondic, L ; Rack, P. D</creator><creatorcontrib>Hartnett, C. A ; Mahady, K ; Fowlkes, J. D ; Afkhami, S ; Kondic, L ; Rack, P. D ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.5b03598</identifier><identifier>PMID: 26595519</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Langmuir, 2015-12, Vol.31 (50), p.13609-13617</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</citedby><cites>FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5b03598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.5b03598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26595519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1267054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartnett, C. A</creatorcontrib><creatorcontrib>Mahady, K</creatorcontrib><creatorcontrib>Fowlkes, J. D</creatorcontrib><creatorcontrib>Afkhami, S</creatorcontrib><creatorcontrib>Kondic, L</creatorcontrib><creatorcontrib>Rack, P. D</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.</description><subject>MATERIALS SCIENCE</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vFCEYh4nR2LX6DYwhnrzMyp9hmPFmV6tNtnqwngnDvFQqA1NgDo1fXja79eiJBJ7fj7zvg9BrSraUMPpem7z1OtzOq0tbMRIuhv4J2lDBSCN6Jp-iDZEtb2Tb8TP0Iuc7QsjA2-E5OmOdGISgwwb9uQq56NF5Vx5wtPibDrHBOkz42pkUs9Ee8N7dr67eQNEeXzqvZwglf8A3SYfsiosB2xRn_MOF24p_SnHxUPAueq-XDLhEfL364qbTw0UC_XtdXqJnVvsMr07nOfp5-flm97XZf_9ytfu4b3RLWWkMZR1Ixntu287yDkTHRhCTJT1Mo-mllkRyPlELHbcA1loOI0xksEZq2_Nz9PbYG3NxKhtXwPwyMQQwRdVySURboXdHaEnxfoVc1OyygTpBgLhmRaWgbd8zQSvaHtHDgnICq5bkZp0eFCXq4EZVN-rRjTq5qbE3px_WcYbpX-hRRgXIETjE7-KaQt3K_zv_AvkfoO8</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Hartnett, C. A</creator><creator>Mahady, K</creator><creator>Fowlkes, J. D</creator><creator>Afkhami, S</creator><creator>Kondic, L</creator><creator>Rack, P. D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151222</creationdate><title>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</title><author>Hartnett, C. A ; Mahady, K ; Fowlkes, J. D ; Afkhami, S ; Kondic, L ; Rack, P. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartnett, C. A</creatorcontrib><creatorcontrib>Mahady, K</creatorcontrib><creatorcontrib>Fowlkes, J. D</creatorcontrib><creatorcontrib>Afkhami, S</creatorcontrib><creatorcontrib>Kondic, L</creatorcontrib><creatorcontrib>Rack, P. D</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartnett, C. A</au><au>Mahady, K</au><au>Fowlkes, J. D</au><au>Afkhami, S</au><au>Kondic, L</au><au>Rack, P. D</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>31</volume><issue>50</issue><spage>13609</spage><epage>13617</epage><pages>13609-13617</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26595519</pmid><doi>10.1021/acs.langmuir.5b03598</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2015-12, Vol.31 (50), p.13609-13617 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_osti_scitechconnect_1267054 |
source | ACS Publications |
subjects | MATERIALS SCIENCE |
title | Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20of%20Nano-%20and%20Microscale%20Liquid%20Metal%20Filaments:%20Transition%20from%20Single%20Droplet%20Collapse%20to%20Multidroplet%20Breakup&rft.jtitle=Langmuir&rft.au=Hartnett,%20C.%20A&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2015-12-22&rft.volume=31&rft.issue=50&rft.spage=13609&rft.epage=13617&rft.pages=13609-13617&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.5b03598&rft_dat=%3Cproquest_osti_%3E1751488251%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751488251&rft_id=info:pmid/26595519&rfr_iscdi=true |