Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup

We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2015-12, Vol.31 (50), p.13609-13617
Hauptverfasser: Hartnett, C. A, Mahady, K, Fowlkes, J. D, Afkhami, S, Kondic, L, Rack, P. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13617
container_issue 50
container_start_page 13609
container_title Langmuir
container_volume 31
creator Hartnett, C. A
Mahady, K
Fowlkes, J. D
Afkhami, S
Kondic, L
Rack, P. D
description We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.
doi_str_mv 10.1021/acs.langmuir.5b03598
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1267054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751488251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</originalsourceid><addsrcrecordid>eNp9kU9vFCEYh4nR2LX6DYwhnrzMyp9hmPFmV6tNtnqwngnDvFQqA1NgDo1fXja79eiJBJ7fj7zvg9BrSraUMPpem7z1OtzOq0tbMRIuhv4J2lDBSCN6Jp-iDZEtb2Tb8TP0Iuc7QsjA2-E5OmOdGISgwwb9uQq56NF5Vx5wtPibDrHBOkz42pkUs9Ee8N7dr67eQNEeXzqvZwglf8A3SYfsiosB2xRn_MOF24p_SnHxUPAueq-XDLhEfL364qbTw0UC_XtdXqJnVvsMr07nOfp5-flm97XZf_9ytfu4b3RLWWkMZR1Ixntu287yDkTHRhCTJT1Mo-mllkRyPlELHbcA1loOI0xksEZq2_Nz9PbYG3NxKhtXwPwyMQQwRdVySURboXdHaEnxfoVc1OyygTpBgLhmRaWgbd8zQSvaHtHDgnICq5bkZp0eFCXq4EZVN-rRjTq5qbE3px_WcYbpX-hRRgXIETjE7-KaQt3K_zv_AvkfoO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751488251</pqid></control><display><type>article</type><title>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</title><source>ACS Publications</source><creator>Hartnett, C. A ; Mahady, K ; Fowlkes, J. D ; Afkhami, S ; Kondic, L ; Rack, P. D</creator><creatorcontrib>Hartnett, C. A ; Mahady, K ; Fowlkes, J. D ; Afkhami, S ; Kondic, L ; Rack, P. D ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.5b03598</identifier><identifier>PMID: 26595519</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Langmuir, 2015-12, Vol.31 (50), p.13609-13617</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</citedby><cites>FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5b03598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.5b03598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26595519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1267054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartnett, C. A</creatorcontrib><creatorcontrib>Mahady, K</creatorcontrib><creatorcontrib>Fowlkes, J. D</creatorcontrib><creatorcontrib>Afkhami, S</creatorcontrib><creatorcontrib>Kondic, L</creatorcontrib><creatorcontrib>Rack, P. D</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.</description><subject>MATERIALS SCIENCE</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vFCEYh4nR2LX6DYwhnrzMyp9hmPFmV6tNtnqwngnDvFQqA1NgDo1fXja79eiJBJ7fj7zvg9BrSraUMPpem7z1OtzOq0tbMRIuhv4J2lDBSCN6Jp-iDZEtb2Tb8TP0Iuc7QsjA2-E5OmOdGISgwwb9uQq56NF5Vx5wtPibDrHBOkz42pkUs9Ee8N7dr67eQNEeXzqvZwglf8A3SYfsiosB2xRn_MOF24p_SnHxUPAueq-XDLhEfL364qbTw0UC_XtdXqJnVvsMr07nOfp5-flm97XZf_9ytfu4b3RLWWkMZR1Ixntu287yDkTHRhCTJT1Mo-mllkRyPlELHbcA1loOI0xksEZq2_Nz9PbYG3NxKhtXwPwyMQQwRdVySURboXdHaEnxfoVc1OyygTpBgLhmRaWgbd8zQSvaHtHDgnICq5bkZp0eFCXq4EZVN-rRjTq5qbE3px_WcYbpX-hRRgXIETjE7-KaQt3K_zv_AvkfoO8</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Hartnett, C. A</creator><creator>Mahady, K</creator><creator>Fowlkes, J. D</creator><creator>Afkhami, S</creator><creator>Kondic, L</creator><creator>Rack, P. D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151222</creationdate><title>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</title><author>Hartnett, C. A ; Mahady, K ; Fowlkes, J. D ; Afkhami, S ; Kondic, L ; Rack, P. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-c126e72383f46f36e562be5df08edbc87a70733d1fe63feefff3ebed09fc7af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartnett, C. A</creatorcontrib><creatorcontrib>Mahady, K</creatorcontrib><creatorcontrib>Fowlkes, J. D</creatorcontrib><creatorcontrib>Afkhami, S</creatorcontrib><creatorcontrib>Kondic, L</creatorcontrib><creatorcontrib>Rack, P. D</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartnett, C. A</au><au>Mahady, K</au><au>Fowlkes, J. D</au><au>Afkhami, S</au><au>Kondic, L</au><au>Rack, P. D</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>31</volume><issue>50</issue><spage>13609</spage><epage>13617</epage><pages>13609-13617</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26595519</pmid><doi>10.1021/acs.langmuir.5b03598</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2015-12, Vol.31 (50), p.13609-13617
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_1267054
source ACS Publications
subjects MATERIALS SCIENCE
title Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20of%20Nano-%20and%20Microscale%20Liquid%20Metal%20Filaments:%20Transition%20from%20Single%20Droplet%20Collapse%20to%20Multidroplet%20Breakup&rft.jtitle=Langmuir&rft.au=Hartnett,%20C.%20A&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2015-12-22&rft.volume=31&rft.issue=50&rft.spage=13609&rft.epage=13617&rft.pages=13609-13617&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.5b03598&rft_dat=%3Cproquest_osti_%3E1751488251%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751488251&rft_id=info:pmid/26595519&rfr_iscdi=true