Phase Separation in Lean-Grade Duplex Stainless Steel 2101

The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C to 538°C. New lean-grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2015-10, Vol.67 (10), p.2216-2222
Hauptverfasser: Garfinkel, David A., Poplawsky, Jonathan D., Guo, Wei, Young, George A., Tucker, Julie D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 10
container_start_page 2216
container_title JOM (1989)
container_volume 67
creator Garfinkel, David A.
Poplawsky, Jonathan D.
Guo, Wei
Young, George A.
Tucker, Julie D.
description The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C to 538°C. New lean-grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1–10,000 h). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α – α ′ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205, were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard-grade DSS alloy 2205 but inferior to the lean-grade alloy 2003 in mechanical testing. APT data demonstrate that the degree of α – α ′ separation found in alloy 2101 closely resembles that of 2205 and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, although precipitates were not as abundant as was observed in 2205.
doi_str_mv 10.1007/s11837-015-1581-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1265661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3813810161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-90c3881a4792405942686b7ec130c79733e91342d8b0c26e8b1755b4e77e74983</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2g62hePiYZd1K1CgWF6jpk0lc7ZcyMyRT035syLty4endxzuVxCTkHdgWM6esEYISmDBQFZYDqAzIBJQUFo-AwZyY1lUaYY3KS0pZlR1YwITcvG5ewWGLvohuaLhRNKBboAp1Ht8Libte3-FUsB9eEFlPKCbEtODA4JUdr1yY8-71T8vZw_zp7pIvn-dPsdkG9VOVAK-aFMeCkrrhkqpK8NGWt0YNgXldaCKxASL4yNfO8RFODVqqWqDXmH42Ykouxt0tDY5NvBvQb34WAfrDAS1WWkKHLEepj97nDNNhtt4sh_2VBg-RMSaUzBSPlY5dSxLXtY_Ph4rcFZvc72nFHm3e0-x3t3uGjkzIb3jH-af5X-gG0ynCf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714205457</pqid></control><display><type>article</type><title>Phase Separation in Lean-Grade Duplex Stainless Steel 2101</title><source>SpringerLink Journals</source><creator>Garfinkel, David A. ; Poplawsky, Jonathan D. ; Guo, Wei ; Young, George A. ; Tucker, Julie D.</creator><creatorcontrib>Garfinkel, David A. ; Poplawsky, Jonathan D. ; Guo, Wei ; Young, George A. ; Tucker, Julie D. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C to 538°C. New lean-grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1–10,000 h). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α – α ′ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205, were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard-grade DSS alloy 2205 but inferior to the lean-grade alloy 2003 in mechanical testing. APT data demonstrate that the degree of α – α ′ separation found in alloy 2101 closely resembles that of 2205 and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, although precipitates were not as abundant as was observed in 2205.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-015-1581-7</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Alloys ; Brittleness ; Chemistry/Food Science ; Corrosion resistance ; Earth Sciences ; Engineering ; Environment ; Hardness testing ; Ion beams ; MATERIALS SCIENCE ; Mechanical properties ; Nuclear power plants ; Phase transitions ; Physics ; Stainless steel ; Studies ; Temperature ; Tomography</subject><ispartof>JOM (1989), 2015-10, Vol.67 (10), p.2216-2222</ispartof><rights>The Minerals, Metals &amp; Materials Society 2015</rights><rights>Copyright Springer Science &amp; Business Media Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-90c3881a4792405942686b7ec130c79733e91342d8b0c26e8b1755b4e77e74983</citedby><cites>FETCH-LOGICAL-c456t-90c3881a4792405942686b7ec130c79733e91342d8b0c26e8b1755b4e77e74983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-015-1581-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-015-1581-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1265661$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Garfinkel, David A.</creatorcontrib><creatorcontrib>Poplawsky, Jonathan D.</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Young, George A.</creatorcontrib><creatorcontrib>Tucker, Julie D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Phase Separation in Lean-Grade Duplex Stainless Steel 2101</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C to 538°C. New lean-grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1–10,000 h). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α – α ′ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205, were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard-grade DSS alloy 2205 but inferior to the lean-grade alloy 2003 in mechanical testing. APT data demonstrate that the degree of α – α ′ separation found in alloy 2101 closely resembles that of 2205 and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, although precipitates were not as abundant as was observed in 2205.</description><subject>Aging</subject><subject>Alloys</subject><subject>Brittleness</subject><subject>Chemistry/Food Science</subject><subject>Corrosion resistance</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Hardness testing</subject><subject>Ion beams</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Nuclear power plants</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Stainless steel</subject><subject>Studies</subject><subject>Temperature</subject><subject>Tomography</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wN2g62hePiYZd1K1CgWF6jpk0lc7ZcyMyRT035syLty4endxzuVxCTkHdgWM6esEYISmDBQFZYDqAzIBJQUFo-AwZyY1lUaYY3KS0pZlR1YwITcvG5ewWGLvohuaLhRNKBboAp1Ht8Libte3-FUsB9eEFlPKCbEtODA4JUdr1yY8-71T8vZw_zp7pIvn-dPsdkG9VOVAK-aFMeCkrrhkqpK8NGWt0YNgXldaCKxASL4yNfO8RFODVqqWqDXmH42Ykouxt0tDY5NvBvQb34WAfrDAS1WWkKHLEepj97nDNNhtt4sh_2VBg-RMSaUzBSPlY5dSxLXtY_Ph4rcFZvc72nFHm3e0-x3t3uGjkzIb3jH-af5X-gG0ynCf</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Garfinkel, David A.</creator><creator>Poplawsky, Jonathan D.</creator><creator>Guo, Wei</creator><creator>Young, George A.</creator><creator>Tucker, Julie D.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151001</creationdate><title>Phase Separation in Lean-Grade Duplex Stainless Steel 2101</title><author>Garfinkel, David A. ; Poplawsky, Jonathan D. ; Guo, Wei ; Young, George A. ; Tucker, Julie D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-90c3881a4792405942686b7ec130c79733e91342d8b0c26e8b1755b4e77e74983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging</topic><topic>Alloys</topic><topic>Brittleness</topic><topic>Chemistry/Food Science</topic><topic>Corrosion resistance</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Hardness testing</topic><topic>Ion beams</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Nuclear power plants</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Stainless steel</topic><topic>Studies</topic><topic>Temperature</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garfinkel, David A.</creatorcontrib><creatorcontrib>Poplawsky, Jonathan D.</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Young, George A.</creatorcontrib><creatorcontrib>Tucker, Julie D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garfinkel, David A.</au><au>Poplawsky, Jonathan D.</au><au>Guo, Wei</au><au>Young, George A.</au><au>Tucker, Julie D.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Separation in Lean-Grade Duplex Stainless Steel 2101</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>67</volume><issue>10</issue><spage>2216</spage><epage>2222</epage><pages>2216-2222</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C to 538°C. New lean-grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1–10,000 h). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α – α ′ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205, were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard-grade DSS alloy 2205 but inferior to the lean-grade alloy 2003 in mechanical testing. APT data demonstrate that the degree of α – α ′ separation found in alloy 2101 closely resembles that of 2205 and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, although precipitates were not as abundant as was observed in 2205.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-015-1581-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2015-10, Vol.67 (10), p.2216-2222
issn 1047-4838
1543-1851
language eng
recordid cdi_osti_scitechconnect_1265661
source SpringerLink Journals
subjects Aging
Alloys
Brittleness
Chemistry/Food Science
Corrosion resistance
Earth Sciences
Engineering
Environment
Hardness testing
Ion beams
MATERIALS SCIENCE
Mechanical properties
Nuclear power plants
Phase transitions
Physics
Stainless steel
Studies
Temperature
Tomography
title Phase Separation in Lean-Grade Duplex Stainless Steel 2101
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Separation%20in%20Lean-Grade%20Duplex%20Stainless%20Steel%202101&rft.jtitle=JOM%20(1989)&rft.au=Garfinkel,%20David%20A.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2015-10-01&rft.volume=67&rft.issue=10&rft.spage=2216&rft.epage=2222&rft.pages=2216-2222&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-015-1581-7&rft_dat=%3Cproquest_osti_%3E3813810161%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714205457&rft_id=info:pmid/&rfr_iscdi=true