Multicentury changes in ocean and land contributions to the climate‐carbon feedback

Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate‐carbon feedbacks from 1850 to 230...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2015-06, Vol.29 (6), p.744-759
Hauptverfasser: Randerson, J. T., Lindsay, K., Munoz, E., Fu, W., Moore, J. K., Hoffman, F. M., Mahowald, N. M., Doney, S. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue 6
container_start_page 744
container_title Global biogeochemical cycles
container_volume 29
creator Randerson, J. T.
Lindsay, K.
Munoz, E.
Fu, W.
Moore, J. K.
Hoffman, F. M.
Mahowald, N. M.
Doney, S. C.
description Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate‐carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate‐carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate‐carbon feedback. Key Points We assessed climate‐carbon feedbacks with CESM1 to 2300 for RCP/ECP8.5 Ocean carbon sensitivity to climate change proportional to heat content Climate influence on carbon largest in Atlantic Ocean and neotropical forests
doi_str_mv 10.1002/2014GB005079
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1265616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3743548241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5631-a842a933c21ce914a3f402ff7b0037b5ab5bd3b81ae5aa5deea970a38aac5ebe3</originalsourceid><addsrcrecordid>eNp90b1uFDEQB3ALgcQR6HgAK2ko2OCPtXddkhO5RAqiIbU19s1yDhs7sb1C1_EIPCNPEkeXAlGkmWl-Gs3Mn5D3nJ1yxsQnwXi_OWNMscG8ICtu-r4zQvQvyYqNo-60kPo1eVPKDWtSKbMi11-XuQaPsS55T_0O4g8sNESaPEKkELd0fiw-xZqDW2pIsdCaaN0h9XO4hYp_f__xkF2KdELcOvA_35JXE8wF3z31I3J9_uX7-qK7-ra5XH--6kBpyTsYewFGSi-4R8N7kFPPxDQNjjE5OAVOua10IwdUAGqLCGZgIEcAr9ChPCLHh7mp1GCLDxX9rq0a0VfLhVaa64Y-HNBdTvcLlmpvQ_E4t7swLcXyoT1j1IMSjZ78R2_SkmM7wXJttBilYUNTHw_K51RKxsne5faIvLec2ccg7L9BNC4O_FeYcf-stZuztWBi4PIBpb-JyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696283907</pqid></control><display><type>article</type><title>Multicentury changes in ocean and land contributions to the climate‐carbon feedback</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Randerson, J. T. ; Lindsay, K. ; Munoz, E. ; Fu, W. ; Moore, J. K. ; Hoffman, F. M. ; Mahowald, N. M. ; Doney, S. C.</creator><creatorcontrib>Randerson, J. T. ; Lindsay, K. ; Munoz, E. ; Fu, W. ; Moore, J. K. ; Hoffman, F. M. ; Mahowald, N. M. ; Doney, S. C. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate‐carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate‐carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate‐carbon feedback. Key Points We assessed climate‐carbon feedbacks with CESM1 to 2300 for RCP/ECP8.5 Ocean carbon sensitivity to climate change proportional to heat content Climate influence on carbon largest in Atlantic Ocean and neotropical forests</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1002/2014GB005079</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosols ; Air temperature ; Anthropogenic factors ; Atlantic meridional overturning circulation ; Carbon ; Carbon cycle ; Carbon dioxide ; carbon‐concentration feedback ; Climate change ; Climate system ; Dissolved inorganic carbon ; ecosystems ; Enthalpy ; Environmental assessment ; ENVIRONMENTAL SCIENCES ; GEOSCIENCES ; Global warming ; Greenhouse gases ; Marine ecosystems ; net primary production ; Oceans ; stratification ; Surface temperature ; Terrestrial ecosystems ; Tropical forests</subject><ispartof>Global biogeochemical cycles, 2015-06, Vol.29 (6), p.744-759</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5631-a842a933c21ce914a3f402ff7b0037b5ab5bd3b81ae5aa5deea970a38aac5ebe3</citedby><cites>FETCH-LOGICAL-a5631-a842a933c21ce914a3f402ff7b0037b5ab5bd3b81ae5aa5deea970a38aac5ebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GB005079$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GB005079$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11495,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1265616$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Randerson, J. T.</creatorcontrib><creatorcontrib>Lindsay, K.</creatorcontrib><creatorcontrib>Munoz, E.</creatorcontrib><creatorcontrib>Fu, W.</creatorcontrib><creatorcontrib>Moore, J. K.</creatorcontrib><creatorcontrib>Hoffman, F. M.</creatorcontrib><creatorcontrib>Mahowald, N. M.</creatorcontrib><creatorcontrib>Doney, S. C.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Multicentury changes in ocean and land contributions to the climate‐carbon feedback</title><title>Global biogeochemical cycles</title><description>Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate‐carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate‐carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate‐carbon feedback. Key Points We assessed climate‐carbon feedbacks with CESM1 to 2300 for RCP/ECP8.5 Ocean carbon sensitivity to climate change proportional to heat content Climate influence on carbon largest in Atlantic Ocean and neotropical forests</description><subject>Aerosols</subject><subject>Air temperature</subject><subject>Anthropogenic factors</subject><subject>Atlantic meridional overturning circulation</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>carbon‐concentration feedback</subject><subject>Climate change</subject><subject>Climate system</subject><subject>Dissolved inorganic carbon</subject><subject>ecosystems</subject><subject>Enthalpy</subject><subject>Environmental assessment</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>GEOSCIENCES</subject><subject>Global warming</subject><subject>Greenhouse gases</subject><subject>Marine ecosystems</subject><subject>net primary production</subject><subject>Oceans</subject><subject>stratification</subject><subject>Surface temperature</subject><subject>Terrestrial ecosystems</subject><subject>Tropical forests</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90b1uFDEQB3ALgcQR6HgAK2ko2OCPtXddkhO5RAqiIbU19s1yDhs7sb1C1_EIPCNPEkeXAlGkmWl-Gs3Mn5D3nJ1yxsQnwXi_OWNMscG8ICtu-r4zQvQvyYqNo-60kPo1eVPKDWtSKbMi11-XuQaPsS55T_0O4g8sNESaPEKkELd0fiw-xZqDW2pIsdCaaN0h9XO4hYp_f__xkF2KdELcOvA_35JXE8wF3z31I3J9_uX7-qK7-ra5XH--6kBpyTsYewFGSi-4R8N7kFPPxDQNjjE5OAVOua10IwdUAGqLCGZgIEcAr9ChPCLHh7mp1GCLDxX9rq0a0VfLhVaa64Y-HNBdTvcLlmpvQ_E4t7swLcXyoT1j1IMSjZ78R2_SkmM7wXJttBilYUNTHw_K51RKxsne5faIvLec2ccg7L9BNC4O_FeYcf-stZuztWBi4PIBpb-JyQ</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Randerson, J. T.</creator><creator>Lindsay, K.</creator><creator>Munoz, E.</creator><creator>Fu, W.</creator><creator>Moore, J. K.</creator><creator>Hoffman, F. M.</creator><creator>Mahowald, N. M.</creator><creator>Doney, S. C.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7ST</scope><scope>7TN</scope><scope>7TV</scope><scope>7U6</scope><scope>H95</scope><scope>OTOTI</scope></search><sort><creationdate>201506</creationdate><title>Multicentury changes in ocean and land contributions to the climate‐carbon feedback</title><author>Randerson, J. T. ; Lindsay, K. ; Munoz, E. ; Fu, W. ; Moore, J. K. ; Hoffman, F. M. ; Mahowald, N. M. ; Doney, S. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5631-a842a933c21ce914a3f402ff7b0037b5ab5bd3b81ae5aa5deea970a38aac5ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerosols</topic><topic>Air temperature</topic><topic>Anthropogenic factors</topic><topic>Atlantic meridional overturning circulation</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>carbon‐concentration feedback</topic><topic>Climate change</topic><topic>Climate system</topic><topic>Dissolved inorganic carbon</topic><topic>ecosystems</topic><topic>Enthalpy</topic><topic>Environmental assessment</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>GEOSCIENCES</topic><topic>Global warming</topic><topic>Greenhouse gases</topic><topic>Marine ecosystems</topic><topic>net primary production</topic><topic>Oceans</topic><topic>stratification</topic><topic>Surface temperature</topic><topic>Terrestrial ecosystems</topic><topic>Tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Randerson, J. T.</creatorcontrib><creatorcontrib>Lindsay, K.</creatorcontrib><creatorcontrib>Munoz, E.</creatorcontrib><creatorcontrib>Fu, W.</creatorcontrib><creatorcontrib>Moore, J. K.</creatorcontrib><creatorcontrib>Hoffman, F. M.</creatorcontrib><creatorcontrib>Mahowald, N. M.</creatorcontrib><creatorcontrib>Doney, S. C.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>OSTI.GOV</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Randerson, J. T.</au><au>Lindsay, K.</au><au>Munoz, E.</au><au>Fu, W.</au><au>Moore, J. K.</au><au>Hoffman, F. M.</au><au>Mahowald, N. M.</au><au>Doney, S. C.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicentury changes in ocean and land contributions to the climate‐carbon feedback</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2015-06</date><risdate>2015</risdate><volume>29</volume><issue>6</issue><spage>744</spage><epage>759</epage><pages>744-759</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate‐carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate‐carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate‐carbon feedback. Key Points We assessed climate‐carbon feedbacks with CESM1 to 2300 for RCP/ECP8.5 Ocean carbon sensitivity to climate change proportional to heat content Climate influence on carbon largest in Atlantic Ocean and neotropical forests</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GB005079</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2015-06, Vol.29 (6), p.744-759
issn 0886-6236
1944-9224
language eng
recordid cdi_osti_scitechconnect_1265616
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aerosols
Air temperature
Anthropogenic factors
Atlantic meridional overturning circulation
Carbon
Carbon cycle
Carbon dioxide
carbon‐concentration feedback
Climate change
Climate system
Dissolved inorganic carbon
ecosystems
Enthalpy
Environmental assessment
ENVIRONMENTAL SCIENCES
GEOSCIENCES
Global warming
Greenhouse gases
Marine ecosystems
net primary production
Oceans
stratification
Surface temperature
Terrestrial ecosystems
Tropical forests
title Multicentury changes in ocean and land contributions to the climate‐carbon feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicentury%20changes%20in%20ocean%20and%20land%20contributions%20to%20the%20climate%E2%80%90carbon%20feedback&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Randerson,%20J.%20T.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-06&rft.volume=29&rft.issue=6&rft.spage=744&rft.epage=759&rft.pages=744-759&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1002/2014GB005079&rft_dat=%3Cproquest_osti_%3E3743548241%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696283907&rft_id=info:pmid/&rfr_iscdi=true