Ab initio molecular dynamics simulations of ion–solid interactions in zirconate pyrochlores

In this study, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A=La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2015-04, Vol.87, p.273-282
Hauptverfasser: Xiao, H.Y., Weber, W.J., Zhang, Y., Zu, X.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue
container_start_page 273
container_title Acta materialia
container_volume 87
creator Xiao, H.Y.
Weber, W.J.
Zhang, Y.
Zu, X.T.
description In this study, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A=La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order-disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present results may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.
doi_str_mv 10.1016/j.actamat.2015.01.019
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1265303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709737423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-fa6de6250debd7ddf2cd7ad854d33b7724b07ddef6a07ed3c052ddaf981a43c23</originalsourceid><addsrcrecordid>eNotUMtKAzEUDaJgrX6CEFy5mZrnpLMsxRcU3OhSQia5Q1NmJjVJF3XlP_iHfompFQ6cyz3nPjgIXVMyo4TWd5uZsdkMJs8YoXJGaEFzgiZ0rnjFhOSnpeayqWohxTm6SGlDCGVKkAl6X7TYjz77gIfQg931JmK3H83gbcLJD6VRxDHh0OHCP1_fKfTelaEMsdz90_yIP320YTQZ8HYfg133IUK6RGed6RNc_fMUvT3cvy6fqtXL4_NysaqsYHWuOlM7qJkkDlqnnOuYdcq4uRSO81YpJlpS2tDVhihw3BLJnDNdM6dGcMv4FN0c94aUvU7WZ7Dr8s4INmvKaskJL6bbo2kbw8cOUtaDTxb63owQdklTRRrFlWAHqzxabQwpRej0NvrBxL2mRB8y1xv9n7k-ZK4JLWj4L8Tte0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709737423</pqid></control><display><type>article</type><title>Ab initio molecular dynamics simulations of ion–solid interactions in zirconate pyrochlores</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xiao, H.Y. ; Weber, W.J. ; Zhang, Y. ; Zu, X.T.</creator><creatorcontrib>Xiao, H.Y. ; Weber, W.J. ; Zhang, Y. ; Zu, X.T. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>In this study, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A=La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order-disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present results may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2015.01.019</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Anions ; Cations ; Charge transfer ; Computer simulation ; Defects ; Low energy ; MATERIALS SCIENCE ; Molecular dynamics ; Pyrochlores ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; Radiation effects ; Simulation ; Zirconate pyrochlores ; Zirconates</subject><ispartof>Acta materialia, 2015-04, Vol.87, p.273-282</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-fa6de6250debd7ddf2cd7ad854d33b7724b07ddef6a07ed3c052ddaf981a43c23</citedby><cites>FETCH-LOGICAL-c426t-fa6de6250debd7ddf2cd7ad854d33b7724b07ddef6a07ed3c052ddaf981a43c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1265303$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, H.Y.</creatorcontrib><creatorcontrib>Weber, W.J.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Ab initio molecular dynamics simulations of ion–solid interactions in zirconate pyrochlores</title><title>Acta materialia</title><description>In this study, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A=La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order-disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present results may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.</description><subject>Anions</subject><subject>Cations</subject><subject>Charge transfer</subject><subject>Computer simulation</subject><subject>Defects</subject><subject>Low energy</subject><subject>MATERIALS SCIENCE</subject><subject>Molecular dynamics</subject><subject>Pyrochlores</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>Radiation effects</subject><subject>Simulation</subject><subject>Zirconate pyrochlores</subject><subject>Zirconates</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUMtKAzEUDaJgrX6CEFy5mZrnpLMsxRcU3OhSQia5Q1NmJjVJF3XlP_iHfompFQ6cyz3nPjgIXVMyo4TWd5uZsdkMJs8YoXJGaEFzgiZ0rnjFhOSnpeayqWohxTm6SGlDCGVKkAl6X7TYjz77gIfQg931JmK3H83gbcLJD6VRxDHh0OHCP1_fKfTelaEMsdz90_yIP320YTQZ8HYfg133IUK6RGed6RNc_fMUvT3cvy6fqtXL4_NysaqsYHWuOlM7qJkkDlqnnOuYdcq4uRSO81YpJlpS2tDVhihw3BLJnDNdM6dGcMv4FN0c94aUvU7WZ7Dr8s4INmvKaskJL6bbo2kbw8cOUtaDTxb63owQdklTRRrFlWAHqzxabQwpRej0NvrBxL2mRB8y1xv9n7k-ZK4JLWj4L8Tte0k</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Xiao, H.Y.</creator><creator>Weber, W.J.</creator><creator>Zhang, Y.</creator><creator>Zu, X.T.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150401</creationdate><title>Ab initio molecular dynamics simulations of ion–solid interactions in zirconate pyrochlores</title><author>Xiao, H.Y. ; Weber, W.J. ; Zhang, Y. ; Zu, X.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-fa6de6250debd7ddf2cd7ad854d33b7724b07ddef6a07ed3c052ddaf981a43c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anions</topic><topic>Cations</topic><topic>Charge transfer</topic><topic>Computer simulation</topic><topic>Defects</topic><topic>Low energy</topic><topic>MATERIALS SCIENCE</topic><topic>Molecular dynamics</topic><topic>Pyrochlores</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>Radiation effects</topic><topic>Simulation</topic><topic>Zirconate pyrochlores</topic><topic>Zirconates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, H.Y.</creatorcontrib><creatorcontrib>Weber, W.J.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, H.Y.</au><au>Weber, W.J.</au><au>Zhang, Y.</au><au>Zu, X.T.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio molecular dynamics simulations of ion–solid interactions in zirconate pyrochlores</atitle><jtitle>Acta materialia</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>87</volume><spage>273</spage><epage>282</epage><pages>273-282</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>In this study, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A=La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order-disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present results may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.</abstract><cop>United States</cop><pub>Elsevier</pub><doi>10.1016/j.actamat.2015.01.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2015-04, Vol.87, p.273-282
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1265303
source Elsevier ScienceDirect Journals Complete
subjects Anions
Cations
Charge transfer
Computer simulation
Defects
Low energy
MATERIALS SCIENCE
Molecular dynamics
Pyrochlores
RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY
Radiation effects
Simulation
Zirconate pyrochlores
Zirconates
title Ab initio molecular dynamics simulations of ion–solid interactions in zirconate pyrochlores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20molecular%20dynamics%20simulations%20of%20ion%E2%80%93solid%20interactions%20in%20zirconate%20pyrochlores&rft.jtitle=Acta%20materialia&rft.au=Xiao,%20H.Y.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-04-01&rft.volume=87&rft.spage=273&rft.epage=282&rft.pages=273-282&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2015.01.019&rft_dat=%3Cproquest_osti_%3E1709737423%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709737423&rft_id=info:pmid/&rfr_iscdi=true