Effects of long-term elevated CO2 treatment on the inner and outer bark chemistry of sweetgum (Liquidambar styraciflua L.) trees

Key message Long-term exposure of sweetgum trees to elevated atmospheric CO 2 concentrations significantly shifted inner bark (phloem) and outer bark (rhytidome) chemical compositions, having implications for both defense and nutrient cycling. Changes in plant tissue chemistry due to increasing atmo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trees (Berlin, West) West), 2015-12, Vol.29 (6), p.1735-1747
Hauptverfasser: Eberhardt, Thomas L., Labbé, Nicole, So, Chi-Leung, Kim, Keonhee, Reed, Karen G., Leduc, Daniel J., Warren, Jeffrey M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1747
container_issue 6
container_start_page 1735
container_title Trees (Berlin, West)
container_volume 29
creator Eberhardt, Thomas L.
Labbé, Nicole
So, Chi-Leung
Kim, Keonhee
Reed, Karen G.
Leduc, Daniel J.
Warren, Jeffrey M.
description Key message Long-term exposure of sweetgum trees to elevated atmospheric CO 2 concentrations significantly shifted inner bark (phloem) and outer bark (rhytidome) chemical compositions, having implications for both defense and nutrient cycling. Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO 2 ) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevated CO 2 concentrations on tree foliar chemistry are well documented, the effects on tree bark chemistry are largely unknown. The objective of this study was to determine the effects of a long-term elevated CO 2 treatment on the contents of individual elements, extractives, ash, lignin, and polysaccharide sugars of sweetgum ( Liquidambar styraciflua L.) bark. Trees were harvested from sweetgum plots equipped with the Free-Air CO 2 Enrichment (FACE) apparatus, receiving either elevated or ambient CO 2 treatments over a 12-year period. Whole bark sections were partitioned into inner bark (phloem) and outer bark (rhytidome) samples before analysis. Principal component analysis, coupled with either Fourier transform infrared spectroscopy or pyrolysis–gas chromatography–mass spectrometry data, was also used to screen for differences. Elevated CO 2 reduced the N content (0.42 vs. 0.35 %) and increased the C:N ratio (109 vs. 136 %) of the outer bark. For the inner bark, elevated CO 2 increased the Mn content (470 vs. 815 mg kg −1 ), total extractives (13.0 vs. 15.6 %), and residual ash content (8.1 vs. 10.8 %) as compared to ambient CO 2 ; differences were also observed for some hemicellulosic sugars, but not lignin. Shifts in bark chemistry can affect the success of herbivores and pathogens in living trees, and as litter, bark can affect the biogeochemical cycling of nutrients within the forest floor. Results demonstrate that increasing atmospheric CO 2 concentrations have the potential to impact the chemistry of temperate, deciduous tree bark such as sweetgum.
doi_str_mv 10.1007/s00468-015-1254-8
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1261487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3877857361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-585c8995d5dfa49c2cfbdb923d96965c15f9f4702a3c3f82e12657c5353207523</originalsourceid><addsrcrecordid>eNp1kU1v1DAURS0EEkPhB7CzYEMXLv6IE3tZjQpFitQNrC2P8zzjksSt7bSaHT8dR0GIDasnPZ17pKuL0HtGrxil3edMadMqQpkkjMuGqBdoxxrBCedKvkQ7qgUjTGn6Gr3J-Z5SKlrGd-jXjffgSsbR4zHOR1IgTRhGeLIFBry_47gksGWCueA443ICHOYZErbzgONScXyw6Sd2J5hCLum8mvIzQDkuE_7Uh8clDHaqDM7lnKwLflws7q8uVzHkt-iVt2OGd3_uBfrx5eb7_pb0d1-_7a974hpOC5FKOqW1HOTgbaMdd_4wHDQXg251Kx2TXvumo9wKJ7ziwHgrOyeFFJx2kosL9GHzxlyCyS4UcCcXaxVXTIVZo7oKXW7QyY7mIYXJprOJNpjb696sP8oUlVx2T6yyHzf2IcXHBXIx93FJc-1gWCfaVjDJV4ptlEsx5wT-r5ZRsy5ntuWqWZp1OaNqhm-ZXNn5COkf839DvwFi95m4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736631521</pqid></control><display><type>article</type><title>Effects of long-term elevated CO2 treatment on the inner and outer bark chemistry of sweetgum (Liquidambar styraciflua L.) trees</title><source>SpringerLink Journals</source><creator>Eberhardt, Thomas L. ; Labbé, Nicole ; So, Chi-Leung ; Kim, Keonhee ; Reed, Karen G. ; Leduc, Daniel J. ; Warren, Jeffrey M.</creator><creatorcontrib>Eberhardt, Thomas L. ; Labbé, Nicole ; So, Chi-Leung ; Kim, Keonhee ; Reed, Karen G. ; Leduc, Daniel J. ; Warren, Jeffrey M. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Key message Long-term exposure of sweetgum trees to elevated atmospheric CO 2 concentrations significantly shifted inner bark (phloem) and outer bark (rhytidome) chemical compositions, having implications for both defense and nutrient cycling. Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO 2 ) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevated CO 2 concentrations on tree foliar chemistry are well documented, the effects on tree bark chemistry are largely unknown. The objective of this study was to determine the effects of a long-term elevated CO 2 treatment on the contents of individual elements, extractives, ash, lignin, and polysaccharide sugars of sweetgum ( Liquidambar styraciflua L.) bark. Trees were harvested from sweetgum plots equipped with the Free-Air CO 2 Enrichment (FACE) apparatus, receiving either elevated or ambient CO 2 treatments over a 12-year period. Whole bark sections were partitioned into inner bark (phloem) and outer bark (rhytidome) samples before analysis. Principal component analysis, coupled with either Fourier transform infrared spectroscopy or pyrolysis–gas chromatography–mass spectrometry data, was also used to screen for differences. Elevated CO 2 reduced the N content (0.42 vs. 0.35 %) and increased the C:N ratio (109 vs. 136 %) of the outer bark. For the inner bark, elevated CO 2 increased the Mn content (470 vs. 815 mg kg −1 ), total extractives (13.0 vs. 15.6 %), and residual ash content (8.1 vs. 10.8 %) as compared to ambient CO 2 ; differences were also observed for some hemicellulosic sugars, but not lignin. Shifts in bark chemistry can affect the success of herbivores and pathogens in living trees, and as litter, bark can affect the biogeochemical cycling of nutrients within the forest floor. Results demonstrate that increasing atmospheric CO 2 concentrations have the potential to impact the chemistry of temperate, deciduous tree bark such as sweetgum.</description><identifier>ISSN: 0931-1890</identifier><identifier>EISSN: 1432-2285</identifier><identifier>DOI: 10.1007/s00468-015-1254-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Ash ; Bark ; BASIC BIOLOGICAL SCIENCES ; Biogeochemical cycles ; Biomedical and Life Sciences ; CARBON-DIOXIDE ; Chemistry ; Climate change ; Continental interfaces, environment ; Deciduous trees ; ENRICHMENT FACE ; Extractives ; Forest floor ; Forestry ; Fourier transforms ; Gas chromatography ; Herbivores ; Infrared spectroscopy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Life Sciences ; Lignin ; Litter ; Mass spectrometry ; NORWAY SPRUCE ; Nutrient cycles ; Ocean, Atmosphere ; Original Article ; PELLET QUALITY ; Phloem ; PICEA-ABIES ; PINE BARK ; Plant Anatomy/Development ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Plant tissues ; PRINCIPAL COMPONENT ANALYSIS ; Principal components analysis ; Pyrolysis ; RESPONSES ; Rhytidome ; RISING ATMOSPHERIC CO2 ; Sciences of the Universe ; Soil nutrients ; STEM WOOD PROPERTIES ; Sugar</subject><ispartof>Trees (Berlin, West), 2015-12, Vol.29 (6), p.1735-1747</ispartof><rights>Springer-Verlag Berlin Heidelberg (outside the USA) 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-585c8995d5dfa49c2cfbdb923d96965c15f9f4702a3c3f82e12657c5353207523</citedby><cites>FETCH-LOGICAL-c420t-585c8995d5dfa49c2cfbdb923d96965c15f9f4702a3c3f82e12657c5353207523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00468-015-1254-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00468-015-1254-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01805257$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1261487$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eberhardt, Thomas L.</creatorcontrib><creatorcontrib>Labbé, Nicole</creatorcontrib><creatorcontrib>So, Chi-Leung</creatorcontrib><creatorcontrib>Kim, Keonhee</creatorcontrib><creatorcontrib>Reed, Karen G.</creatorcontrib><creatorcontrib>Leduc, Daniel J.</creatorcontrib><creatorcontrib>Warren, Jeffrey M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Effects of long-term elevated CO2 treatment on the inner and outer bark chemistry of sweetgum (Liquidambar styraciflua L.) trees</title><title>Trees (Berlin, West)</title><addtitle>Trees</addtitle><description>Key message Long-term exposure of sweetgum trees to elevated atmospheric CO 2 concentrations significantly shifted inner bark (phloem) and outer bark (rhytidome) chemical compositions, having implications for both defense and nutrient cycling. Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO 2 ) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevated CO 2 concentrations on tree foliar chemistry are well documented, the effects on tree bark chemistry are largely unknown. The objective of this study was to determine the effects of a long-term elevated CO 2 treatment on the contents of individual elements, extractives, ash, lignin, and polysaccharide sugars of sweetgum ( Liquidambar styraciflua L.) bark. Trees were harvested from sweetgum plots equipped with the Free-Air CO 2 Enrichment (FACE) apparatus, receiving either elevated or ambient CO 2 treatments over a 12-year period. Whole bark sections were partitioned into inner bark (phloem) and outer bark (rhytidome) samples before analysis. Principal component analysis, coupled with either Fourier transform infrared spectroscopy or pyrolysis–gas chromatography–mass spectrometry data, was also used to screen for differences. Elevated CO 2 reduced the N content (0.42 vs. 0.35 %) and increased the C:N ratio (109 vs. 136 %) of the outer bark. For the inner bark, elevated CO 2 increased the Mn content (470 vs. 815 mg kg −1 ), total extractives (13.0 vs. 15.6 %), and residual ash content (8.1 vs. 10.8 %) as compared to ambient CO 2 ; differences were also observed for some hemicellulosic sugars, but not lignin. Shifts in bark chemistry can affect the success of herbivores and pathogens in living trees, and as litter, bark can affect the biogeochemical cycling of nutrients within the forest floor. Results demonstrate that increasing atmospheric CO 2 concentrations have the potential to impact the chemistry of temperate, deciduous tree bark such as sweetgum.</description><subject>Agriculture</subject><subject>Ash</subject><subject>Bark</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biogeochemical cycles</subject><subject>Biomedical and Life Sciences</subject><subject>CARBON-DIOXIDE</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>Continental interfaces, environment</subject><subject>Deciduous trees</subject><subject>ENRICHMENT FACE</subject><subject>Extractives</subject><subject>Forest floor</subject><subject>Forestry</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Herbivores</subject><subject>Infrared spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Litter</subject><subject>Mass spectrometry</subject><subject>NORWAY SPRUCE</subject><subject>Nutrient cycles</subject><subject>Ocean, Atmosphere</subject><subject>Original Article</subject><subject>PELLET QUALITY</subject><subject>Phloem</subject><subject>PICEA-ABIES</subject><subject>PINE BARK</subject><subject>Plant Anatomy/Development</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant tissues</subject><subject>PRINCIPAL COMPONENT ANALYSIS</subject><subject>Principal components analysis</subject><subject>Pyrolysis</subject><subject>RESPONSES</subject><subject>Rhytidome</subject><subject>RISING ATMOSPHERIC CO2</subject><subject>Sciences of the Universe</subject><subject>Soil nutrients</subject><subject>STEM WOOD PROPERTIES</subject><subject>Sugar</subject><issn>0931-1890</issn><issn>1432-2285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1v1DAURS0EEkPhB7CzYEMXLv6IE3tZjQpFitQNrC2P8zzjksSt7bSaHT8dR0GIDasnPZ17pKuL0HtGrxil3edMadMqQpkkjMuGqBdoxxrBCedKvkQ7qgUjTGn6Gr3J-Z5SKlrGd-jXjffgSsbR4zHOR1IgTRhGeLIFBry_47gksGWCueA443ICHOYZErbzgONScXyw6Sd2J5hCLum8mvIzQDkuE_7Uh8clDHaqDM7lnKwLflws7q8uVzHkt-iVt2OGd3_uBfrx5eb7_pb0d1-_7a974hpOC5FKOqW1HOTgbaMdd_4wHDQXg251Kx2TXvumo9wKJ7ziwHgrOyeFFJx2kosL9GHzxlyCyS4UcCcXaxVXTIVZo7oKXW7QyY7mIYXJprOJNpjb696sP8oUlVx2T6yyHzf2IcXHBXIx93FJc-1gWCfaVjDJV4ptlEsx5wT-r5ZRsy5ntuWqWZp1OaNqhm-ZXNn5COkf839DvwFi95m4</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Eberhardt, Thomas L.</creator><creator>Labbé, Nicole</creator><creator>So, Chi-Leung</creator><creator>Kim, Keonhee</creator><creator>Reed, Karen G.</creator><creator>Leduc, Daniel J.</creator><creator>Warren, Jeffrey M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151201</creationdate><title>Effects of long-term elevated CO2 treatment on the inner and outer bark chemistry of sweetgum (Liquidambar styraciflua L.) trees</title><author>Eberhardt, Thomas L. ; Labbé, Nicole ; So, Chi-Leung ; Kim, Keonhee ; Reed, Karen G. ; Leduc, Daniel J. ; Warren, Jeffrey M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-585c8995d5dfa49c2cfbdb923d96965c15f9f4702a3c3f82e12657c5353207523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agriculture</topic><topic>Ash</topic><topic>Bark</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biogeochemical cycles</topic><topic>Biomedical and Life Sciences</topic><topic>CARBON-DIOXIDE</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>Continental interfaces, environment</topic><topic>Deciduous trees</topic><topic>ENRICHMENT FACE</topic><topic>Extractives</topic><topic>Forest floor</topic><topic>Forestry</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Herbivores</topic><topic>Infrared spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Litter</topic><topic>Mass spectrometry</topic><topic>NORWAY SPRUCE</topic><topic>Nutrient cycles</topic><topic>Ocean, Atmosphere</topic><topic>Original Article</topic><topic>PELLET QUALITY</topic><topic>Phloem</topic><topic>PICEA-ABIES</topic><topic>PINE BARK</topic><topic>Plant Anatomy/Development</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant tissues</topic><topic>PRINCIPAL COMPONENT ANALYSIS</topic><topic>Principal components analysis</topic><topic>Pyrolysis</topic><topic>RESPONSES</topic><topic>Rhytidome</topic><topic>RISING ATMOSPHERIC CO2</topic><topic>Sciences of the Universe</topic><topic>Soil nutrients</topic><topic>STEM WOOD PROPERTIES</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberhardt, Thomas L.</creatorcontrib><creatorcontrib>Labbé, Nicole</creatorcontrib><creatorcontrib>So, Chi-Leung</creatorcontrib><creatorcontrib>Kim, Keonhee</creatorcontrib><creatorcontrib>Reed, Karen G.</creatorcontrib><creatorcontrib>Leduc, Daniel J.</creatorcontrib><creatorcontrib>Warren, Jeffrey M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Trees (Berlin, West)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberhardt, Thomas L.</au><au>Labbé, Nicole</au><au>So, Chi-Leung</au><au>Kim, Keonhee</au><au>Reed, Karen G.</au><au>Leduc, Daniel J.</au><au>Warren, Jeffrey M.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of long-term elevated CO2 treatment on the inner and outer bark chemistry of sweetgum (Liquidambar styraciflua L.) trees</atitle><jtitle>Trees (Berlin, West)</jtitle><stitle>Trees</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>29</volume><issue>6</issue><spage>1735</spage><epage>1747</epage><pages>1735-1747</pages><issn>0931-1890</issn><eissn>1432-2285</eissn><abstract>Key message Long-term exposure of sweetgum trees to elevated atmospheric CO 2 concentrations significantly shifted inner bark (phloem) and outer bark (rhytidome) chemical compositions, having implications for both defense and nutrient cycling. Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO 2 ) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevated CO 2 concentrations on tree foliar chemistry are well documented, the effects on tree bark chemistry are largely unknown. The objective of this study was to determine the effects of a long-term elevated CO 2 treatment on the contents of individual elements, extractives, ash, lignin, and polysaccharide sugars of sweetgum ( Liquidambar styraciflua L.) bark. Trees were harvested from sweetgum plots equipped with the Free-Air CO 2 Enrichment (FACE) apparatus, receiving either elevated or ambient CO 2 treatments over a 12-year period. Whole bark sections were partitioned into inner bark (phloem) and outer bark (rhytidome) samples before analysis. Principal component analysis, coupled with either Fourier transform infrared spectroscopy or pyrolysis–gas chromatography–mass spectrometry data, was also used to screen for differences. Elevated CO 2 reduced the N content (0.42 vs. 0.35 %) and increased the C:N ratio (109 vs. 136 %) of the outer bark. For the inner bark, elevated CO 2 increased the Mn content (470 vs. 815 mg kg −1 ), total extractives (13.0 vs. 15.6 %), and residual ash content (8.1 vs. 10.8 %) as compared to ambient CO 2 ; differences were also observed for some hemicellulosic sugars, but not lignin. Shifts in bark chemistry can affect the success of herbivores and pathogens in living trees, and as litter, bark can affect the biogeochemical cycling of nutrients within the forest floor. Results demonstrate that increasing atmospheric CO 2 concentrations have the potential to impact the chemistry of temperate, deciduous tree bark such as sweetgum.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00468-015-1254-8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0931-1890
ispartof Trees (Berlin, West), 2015-12, Vol.29 (6), p.1735-1747
issn 0931-1890
1432-2285
language eng
recordid cdi_osti_scitechconnect_1261487
source SpringerLink Journals
subjects Agriculture
Ash
Bark
BASIC BIOLOGICAL SCIENCES
Biogeochemical cycles
Biomedical and Life Sciences
CARBON-DIOXIDE
Chemistry
Climate change
Continental interfaces, environment
Deciduous trees
ENRICHMENT FACE
Extractives
Forest floor
Forestry
Fourier transforms
Gas chromatography
Herbivores
Infrared spectroscopy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Life Sciences
Lignin
Litter
Mass spectrometry
NORWAY SPRUCE
Nutrient cycles
Ocean, Atmosphere
Original Article
PELLET QUALITY
Phloem
PICEA-ABIES
PINE BARK
Plant Anatomy/Development
Plant Pathology
Plant Physiology
Plant Sciences
Plant tissues
PRINCIPAL COMPONENT ANALYSIS
Principal components analysis
Pyrolysis
RESPONSES
Rhytidome
RISING ATMOSPHERIC CO2
Sciences of the Universe
Soil nutrients
STEM WOOD PROPERTIES
Sugar
title Effects of long-term elevated CO2 treatment on the inner and outer bark chemistry of sweetgum (Liquidambar styraciflua L.) trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20long-term%20elevated%20CO2%20treatment%20on%20the%20inner%20and%20outer%20bark%20chemistry%20of%20sweetgum%20(Liquidambar%20styraciflua%20L.)%20trees&rft.jtitle=Trees%20(Berlin,%20West)&rft.au=Eberhardt,%20Thomas%20L.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-12-01&rft.volume=29&rft.issue=6&rft.spage=1735&rft.epage=1747&rft.pages=1735-1747&rft.issn=0931-1890&rft.eissn=1432-2285&rft_id=info:doi/10.1007/s00468-015-1254-8&rft_dat=%3Cproquest_osti_%3E3877857361%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736631521&rft_id=info:pmid/&rfr_iscdi=true