Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus
Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulate...
Gespeichert in:
Veröffentlicht in: | Nano letters 2016-04, Vol.16 (4), p.2260-2267 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2267 |
---|---|
container_issue | 4 |
container_start_page | 2260 |
container_title | Nano letters |
container_volume | 16 |
creator | Ling, Xi Huang, Shengxi Hasdeo, Eddwi H Liang, Liangbo Parkin, William M Tatsumi, Yuki Nugraha, Ahmad R. T Puretzky, Alexander A Das, Paul Masih Sumpter, Bobby G Geohegan, David B Kong, Jing Saito, Riichiro Drndic, Marija Meunier, Vincent Dresselhaus, Mildred S |
description | Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron–photon and electron–phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously. |
doi_str_mv | 10.1021/acs.nanolett.5b04540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1257894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781152676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520t-3d8013c1b9de9fa616cbcadda248b18b12f47714d61c5bc731fa9ea8ef26f2723</originalsourceid><addsrcrecordid>eNqFkU9PwyAYh4nRuDn9BsY0nrx08tJC6XEuU5cscQc9E0pp1tnBBHrw28uyP4kXTUh48_L8XggPQreAx4AJPErlx0Ya2-kQxrTCOc3xGRoCzXDKypKcn2qeD9CV92uMcZlRfIkGhJUsY5wO0XJiWm-Ds9tWJbNOq1iadLmywZpEmvpXz8Te3ATtpAqtNT5pTfLUSfWZxEO_XVnX-2t00cjO65vDPkIfz7P36Wu6eHuZTyeLVFKCQ5rVHEOmoCprXTaSAVOVknUtSc4riIs0eVFAXjNQtFJFBo0steS6IawhBclG6H4_1_rQCq_aoNVKWWPicwUQWvAyj9DDHto6-9VrH8Sm9Up3nTTa9l4AB4Yx5QT_jxYcgBJWsIjme1Q5673Tjdi6diPdtwAsdm5EdCOObsTBTYzdHW7oq42uT6GjjAjgPbCLr23vTPzAv2f-AKFUnpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781152676</pqid></control><display><type>article</type><title>Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus</title><source>ACS Publications</source><creator>Ling, Xi ; Huang, Shengxi ; Hasdeo, Eddwi H ; Liang, Liangbo ; Parkin, William M ; Tatsumi, Yuki ; Nugraha, Ahmad R. T ; Puretzky, Alexander A ; Das, Paul Masih ; Sumpter, Bobby G ; Geohegan, David B ; Kong, Jing ; Saito, Riichiro ; Drndic, Marija ; Meunier, Vincent ; Dresselhaus, Mildred S</creator><creatorcontrib>Ling, Xi ; Huang, Shengxi ; Hasdeo, Eddwi H ; Liang, Liangbo ; Parkin, William M ; Tatsumi, Yuki ; Nugraha, Ahmad R. T ; Puretzky, Alexander A ; Das, Paul Masih ; Sumpter, Bobby G ; Geohegan, David B ; Kong, Jing ; Saito, Riichiro ; Drndic, Marija ; Meunier, Vincent ; Dresselhaus, Mildred S ; Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron–photon and electron–phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b04540</identifier><identifier>PMID: 26963685</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption ; Anisotropy ; Crystal structure ; crystalline orientation ; Flakes ; In-plane anisotropy ; MATERIALS SCIENCE ; optical absorption ; optical selection rule ; Orientation ; Phosphorus ; Raman spectroscopy ; Two dimensional</subject><ispartof>Nano letters, 2016-04, Vol.16 (4), p.2260-2267</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a520t-3d8013c1b9de9fa616cbcadda248b18b12f47714d61c5bc731fa9ea8ef26f2723</citedby><cites>FETCH-LOGICAL-a520t-3d8013c1b9de9fa616cbcadda248b18b12f47714d61c5bc731fa9ea8ef26f2723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b04540$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b04540$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26963685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1257894$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Xi</creatorcontrib><creatorcontrib>Huang, Shengxi</creatorcontrib><creatorcontrib>Hasdeo, Eddwi H</creatorcontrib><creatorcontrib>Liang, Liangbo</creatorcontrib><creatorcontrib>Parkin, William M</creatorcontrib><creatorcontrib>Tatsumi, Yuki</creatorcontrib><creatorcontrib>Nugraha, Ahmad R. T</creatorcontrib><creatorcontrib>Puretzky, Alexander A</creatorcontrib><creatorcontrib>Das, Paul Masih</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Geohegan, David B</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Saito, Riichiro</creatorcontrib><creatorcontrib>Drndic, Marija</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Dresselhaus, Mildred S</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron–photon and electron–phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.</description><subject>Absorption</subject><subject>Anisotropy</subject><subject>Crystal structure</subject><subject>crystalline orientation</subject><subject>Flakes</subject><subject>In-plane anisotropy</subject><subject>MATERIALS SCIENCE</subject><subject>optical absorption</subject><subject>optical selection rule</subject><subject>Orientation</subject><subject>Phosphorus</subject><subject>Raman spectroscopy</subject><subject>Two dimensional</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU9PwyAYh4nRuDn9BsY0nrx08tJC6XEuU5cscQc9E0pp1tnBBHrw28uyP4kXTUh48_L8XggPQreAx4AJPErlx0Ya2-kQxrTCOc3xGRoCzXDKypKcn2qeD9CV92uMcZlRfIkGhJUsY5wO0XJiWm-Ds9tWJbNOq1iadLmywZpEmvpXz8Te3ATtpAqtNT5pTfLUSfWZxEO_XVnX-2t00cjO65vDPkIfz7P36Wu6eHuZTyeLVFKCQ5rVHEOmoCprXTaSAVOVknUtSc4riIs0eVFAXjNQtFJFBo0steS6IawhBclG6H4_1_rQCq_aoNVKWWPicwUQWvAyj9DDHto6-9VrH8Sm9Up3nTTa9l4AB4Yx5QT_jxYcgBJWsIjme1Q5673Tjdi6diPdtwAsdm5EdCOObsTBTYzdHW7oq42uT6GjjAjgPbCLr23vTPzAv2f-AKFUnpU</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Ling, Xi</creator><creator>Huang, Shengxi</creator><creator>Hasdeo, Eddwi H</creator><creator>Liang, Liangbo</creator><creator>Parkin, William M</creator><creator>Tatsumi, Yuki</creator><creator>Nugraha, Ahmad R. T</creator><creator>Puretzky, Alexander A</creator><creator>Das, Paul Masih</creator><creator>Sumpter, Bobby G</creator><creator>Geohegan, David B</creator><creator>Kong, Jing</creator><creator>Saito, Riichiro</creator><creator>Drndic, Marija</creator><creator>Meunier, Vincent</creator><creator>Dresselhaus, Mildred S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160413</creationdate><title>Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus</title><author>Ling, Xi ; Huang, Shengxi ; Hasdeo, Eddwi H ; Liang, Liangbo ; Parkin, William M ; Tatsumi, Yuki ; Nugraha, Ahmad R. T ; Puretzky, Alexander A ; Das, Paul Masih ; Sumpter, Bobby G ; Geohegan, David B ; Kong, Jing ; Saito, Riichiro ; Drndic, Marija ; Meunier, Vincent ; Dresselhaus, Mildred S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520t-3d8013c1b9de9fa616cbcadda248b18b12f47714d61c5bc731fa9ea8ef26f2723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>Anisotropy</topic><topic>Crystal structure</topic><topic>crystalline orientation</topic><topic>Flakes</topic><topic>In-plane anisotropy</topic><topic>MATERIALS SCIENCE</topic><topic>optical absorption</topic><topic>optical selection rule</topic><topic>Orientation</topic><topic>Phosphorus</topic><topic>Raman spectroscopy</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Xi</creatorcontrib><creatorcontrib>Huang, Shengxi</creatorcontrib><creatorcontrib>Hasdeo, Eddwi H</creatorcontrib><creatorcontrib>Liang, Liangbo</creatorcontrib><creatorcontrib>Parkin, William M</creatorcontrib><creatorcontrib>Tatsumi, Yuki</creatorcontrib><creatorcontrib>Nugraha, Ahmad R. T</creatorcontrib><creatorcontrib>Puretzky, Alexander A</creatorcontrib><creatorcontrib>Das, Paul Masih</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Geohegan, David B</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Saito, Riichiro</creatorcontrib><creatorcontrib>Drndic, Marija</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Dresselhaus, Mildred S</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Xi</au><au>Huang, Shengxi</au><au>Hasdeo, Eddwi H</au><au>Liang, Liangbo</au><au>Parkin, William M</au><au>Tatsumi, Yuki</au><au>Nugraha, Ahmad R. T</au><au>Puretzky, Alexander A</au><au>Das, Paul Masih</au><au>Sumpter, Bobby G</au><au>Geohegan, David B</au><au>Kong, Jing</au><au>Saito, Riichiro</au><au>Drndic, Marija</au><au>Meunier, Vincent</au><au>Dresselhaus, Mildred S</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-04-13</date><risdate>2016</risdate><volume>16</volume><issue>4</issue><spage>2260</spage><epage>2267</epage><pages>2260-2267</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron–photon and electron–phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26963685</pmid><doi>10.1021/acs.nanolett.5b04540</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2016-04, Vol.16 (4), p.2260-2267 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1257894 |
source | ACS Publications |
subjects | Absorption Anisotropy Crystal structure crystalline orientation Flakes In-plane anisotropy MATERIALS SCIENCE optical absorption optical selection rule Orientation Phosphorus Raman spectroscopy Two dimensional |
title | Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Electron-Photon%20and%20Electron-Phonon%20Interactions%20in%20Black%20Phosphorus&rft.jtitle=Nano%20letters&rft.au=Ling,%20Xi&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Solid-State%20Solar-Thermal%20Energy%20Conversion%20Center%20(S3TEC)&rft.date=2016-04-13&rft.volume=16&rft.issue=4&rft.spage=2260&rft.epage=2267&rft.pages=2260-2267&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b04540&rft_dat=%3Cproquest_osti_%3E1781152676%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781152676&rft_id=info:pmid/26963685&rfr_iscdi=true |