Self-Organized Stationary States of Tokamaks

We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-11, Vol.115 (21), p.215001-215001, Article 215001
Hauptverfasser: Jardin, S C, Ferraro, N, Krebs, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215001
container_issue 21
container_start_page 215001
container_title Physical review letters
container_volume 115
creator Jardin, S C
Ferraro, N
Krebs, I
description We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."
doi_str_mv 10.1103/PhysRevLett.115.215001
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1254899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786160581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotlb_QimePLg1k69NjlL8gkLF1nPIZhO7drtbN6lQf72rW8WjpxlenncGHoSGgMcAmF49Lnfhyb1PXYxtwMcEOMZwgPqAU5WkAOwQ9TGmkCiM0x46CeEVtwQR8hj1iBBUSM766HLuSp_MmhdTFR8uH82jiUVdmWb3vbowqv1oUa_M2qzCKTrypgzubD8H6Pn2ZjG5T6azu4fJ9TSxnMqYZIRSKawBocD6PMsIBiGctYaylPjMOqEkGM6ool4JmqeQu4wDI5ZlPhV0gM67u3WIhQ62iM4ubV1VzkYNhDOpVAtddNCmqd-2LkS9LoJ1ZWkqV2-DhlQKEJhL-AfKmOCKM9aiokNtU4fQOK83TbFudWjA-su8_mO-DbjuzLfF4f7HNlu7_Lf2o5p-AkWqf_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744659544</pqid></control><display><type>article</type><title>Self-Organized Stationary States of Tokamaks</title><source>American Physical Society Journals</source><creator>Jardin, S C ; Ferraro, N ; Krebs, I</creator><creatorcontrib>Jardin, S C ; Ferraro, N ; Krebs, I ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.115.215001</identifier><identifier>PMID: 26636854</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics ; Electric potential ; Fluid dynamics ; Flux ; Helical flow ; Simulation ; Stability, Ideal Hydromagnetic ; Three dimensional ; Tokamaks ; Voltage</subject><ispartof>Physical review letters, 2015-11, Vol.115 (21), p.215001-215001, Article 215001</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</citedby><cites>FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</cites><orcidid>0000000163906908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26636854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1254899$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jardin, S C</creatorcontrib><creatorcontrib>Ferraro, N</creatorcontrib><creatorcontrib>Krebs, I</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Self-Organized Stationary States of Tokamaks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics</subject><subject>Electric potential</subject><subject>Fluid dynamics</subject><subject>Flux</subject><subject>Helical flow</subject><subject>Simulation</subject><subject>Stability, Ideal Hydromagnetic</subject><subject>Three dimensional</subject><subject>Tokamaks</subject><subject>Voltage</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMotlb_QimePLg1k69NjlL8gkLF1nPIZhO7drtbN6lQf72rW8WjpxlenncGHoSGgMcAmF49Lnfhyb1PXYxtwMcEOMZwgPqAU5WkAOwQ9TGmkCiM0x46CeEVtwQR8hj1iBBUSM766HLuSp_MmhdTFR8uH82jiUVdmWb3vbowqv1oUa_M2qzCKTrypgzubD8H6Pn2ZjG5T6azu4fJ9TSxnMqYZIRSKawBocD6PMsIBiGctYaylPjMOqEkGM6ool4JmqeQu4wDI5ZlPhV0gM67u3WIhQ62iM4ubV1VzkYNhDOpVAtddNCmqd-2LkS9LoJ1ZWkqV2-DhlQKEJhL-AfKmOCKM9aiokNtU4fQOK83TbFudWjA-su8_mO-DbjuzLfF4f7HNlu7_Lf2o5p-AkWqf_g</recordid><startdate>20151120</startdate><enddate>20151120</enddate><creator>Jardin, S C</creator><creator>Ferraro, N</creator><creator>Krebs, I</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000163906908</orcidid></search><sort><creationdate>20151120</creationdate><title>Self-Organized Stationary States of Tokamaks</title><author>Jardin, S C ; Ferraro, N ; Krebs, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics</topic><topic>Electric potential</topic><topic>Fluid dynamics</topic><topic>Flux</topic><topic>Helical flow</topic><topic>Simulation</topic><topic>Stability, Ideal Hydromagnetic</topic><topic>Three dimensional</topic><topic>Tokamaks</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jardin, S C</creatorcontrib><creatorcontrib>Ferraro, N</creatorcontrib><creatorcontrib>Krebs, I</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jardin, S C</au><au>Ferraro, N</au><au>Krebs, I</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Organized Stationary States of Tokamaks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-11-20</date><risdate>2015</risdate><volume>115</volume><issue>21</issue><spage>215001</spage><epage>215001</epage><pages>215001-215001</pages><artnum>215001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>26636854</pmid><doi>10.1103/PhysRevLett.115.215001</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000163906908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2015-11, Vol.115 (21), p.215001-215001, Article 215001
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1254899
source American Physical Society Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics
Electric potential
Fluid dynamics
Flux
Helical flow
Simulation
Stability, Ideal Hydromagnetic
Three dimensional
Tokamaks
Voltage
title Self-Organized Stationary States of Tokamaks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Organized%20Stationary%20States%20of%20Tokamaks&rft.jtitle=Physical%20review%20letters&rft.au=Jardin,%20S%20C&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2015-11-20&rft.volume=115&rft.issue=21&rft.spage=215001&rft.epage=215001&rft.pages=215001-215001&rft.artnum=215001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.115.215001&rft_dat=%3Cproquest_osti_%3E1786160581%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744659544&rft_id=info:pmid/26636854&rfr_iscdi=true