Self-Organized Stationary States of Tokamaks
We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-11, Vol.115 (21), p.215001-215001, Article 215001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215001 |
---|---|
container_issue | 21 |
container_start_page | 215001 |
container_title | Physical review letters |
container_volume | 115 |
creator | Jardin, S C Ferraro, N Krebs, I |
description | We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping." |
doi_str_mv | 10.1103/PhysRevLett.115.215001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1254899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786160581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotlb_QimePLg1k69NjlL8gkLF1nPIZhO7drtbN6lQf72rW8WjpxlenncGHoSGgMcAmF49Lnfhyb1PXYxtwMcEOMZwgPqAU5WkAOwQ9TGmkCiM0x46CeEVtwQR8hj1iBBUSM766HLuSp_MmhdTFR8uH82jiUVdmWb3vbowqv1oUa_M2qzCKTrypgzubD8H6Pn2ZjG5T6azu4fJ9TSxnMqYZIRSKawBocD6PMsIBiGctYaylPjMOqEkGM6ool4JmqeQu4wDI5ZlPhV0gM67u3WIhQ62iM4ubV1VzkYNhDOpVAtddNCmqd-2LkS9LoJ1ZWkqV2-DhlQKEJhL-AfKmOCKM9aiokNtU4fQOK83TbFudWjA-su8_mO-DbjuzLfF4f7HNlu7_Lf2o5p-AkWqf_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744659544</pqid></control><display><type>article</type><title>Self-Organized Stationary States of Tokamaks</title><source>American Physical Society Journals</source><creator>Jardin, S C ; Ferraro, N ; Krebs, I</creator><creatorcontrib>Jardin, S C ; Ferraro, N ; Krebs, I ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.115.215001</identifier><identifier>PMID: 26636854</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics ; Electric potential ; Fluid dynamics ; Flux ; Helical flow ; Simulation ; Stability, Ideal Hydromagnetic ; Three dimensional ; Tokamaks ; Voltage</subject><ispartof>Physical review letters, 2015-11, Vol.115 (21), p.215001-215001, Article 215001</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</citedby><cites>FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</cites><orcidid>0000000163906908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26636854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1254899$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jardin, S C</creatorcontrib><creatorcontrib>Ferraro, N</creatorcontrib><creatorcontrib>Krebs, I</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Self-Organized Stationary States of Tokamaks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics</subject><subject>Electric potential</subject><subject>Fluid dynamics</subject><subject>Flux</subject><subject>Helical flow</subject><subject>Simulation</subject><subject>Stability, Ideal Hydromagnetic</subject><subject>Three dimensional</subject><subject>Tokamaks</subject><subject>Voltage</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMotlb_QimePLg1k69NjlL8gkLF1nPIZhO7drtbN6lQf72rW8WjpxlenncGHoSGgMcAmF49Lnfhyb1PXYxtwMcEOMZwgPqAU5WkAOwQ9TGmkCiM0x46CeEVtwQR8hj1iBBUSM766HLuSp_MmhdTFR8uH82jiUVdmWb3vbowqv1oUa_M2qzCKTrypgzubD8H6Pn2ZjG5T6azu4fJ9TSxnMqYZIRSKawBocD6PMsIBiGctYaylPjMOqEkGM6ool4JmqeQu4wDI5ZlPhV0gM67u3WIhQ62iM4ubV1VzkYNhDOpVAtddNCmqd-2LkS9LoJ1ZWkqV2-DhlQKEJhL-AfKmOCKM9aiokNtU4fQOK83TbFudWjA-su8_mO-DbjuzLfF4f7HNlu7_Lf2o5p-AkWqf_g</recordid><startdate>20151120</startdate><enddate>20151120</enddate><creator>Jardin, S C</creator><creator>Ferraro, N</creator><creator>Krebs, I</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000163906908</orcidid></search><sort><creationdate>20151120</creationdate><title>Self-Organized Stationary States of Tokamaks</title><author>Jardin, S C ; Ferraro, N ; Krebs, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-b23386ca1691cfdbb20166ecca3472fbce6981a54393f963d71deb5142c4bf763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics</topic><topic>Electric potential</topic><topic>Fluid dynamics</topic><topic>Flux</topic><topic>Helical flow</topic><topic>Simulation</topic><topic>Stability, Ideal Hydromagnetic</topic><topic>Three dimensional</topic><topic>Tokamaks</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jardin, S C</creatorcontrib><creatorcontrib>Ferraro, N</creatorcontrib><creatorcontrib>Krebs, I</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jardin, S C</au><au>Ferraro, N</au><au>Krebs, I</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Organized Stationary States of Tokamaks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-11-20</date><risdate>2015</risdate><volume>115</volume><issue>21</issue><spage>215001</spage><epage>215001</epage><pages>215001-215001</pages><artnum>215001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>26636854</pmid><doi>10.1103/PhysRevLett.115.215001</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000163906908</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2015-11, Vol.115 (21), p.215001-215001, Article 215001 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1254899 |
source | American Physical Society Journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Magnetohydrodynamics Electric potential Fluid dynamics Flux Helical flow Simulation Stability, Ideal Hydromagnetic Three dimensional Tokamaks Voltage |
title | Self-Organized Stationary States of Tokamaks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Organized%20Stationary%20States%20of%20Tokamaks&rft.jtitle=Physical%20review%20letters&rft.au=Jardin,%20S%20C&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2015-11-20&rft.volume=115&rft.issue=21&rft.spage=215001&rft.epage=215001&rft.pages=215001-215001&rft.artnum=215001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.115.215001&rft_dat=%3Cproquest_osti_%3E1786160581%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744659544&rft_id=info:pmid/26636854&rfr_iscdi=true |