Engineering technologies for fluid chemical hydrogen storage system
•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers ne...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2015-10, Vol.645 (S1), p.S41-S45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S45 |
---|---|
container_issue | S1 |
container_start_page | S41 |
container_title | Journal of alloys and compounds |
container_volume | 645 |
creator | van Hassel, Bart A. McGee, Randolph C. Murray, Allen Zhang, Shiling |
description | •A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines.
An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity. |
doi_str_mv | 10.1016/j.jallcom.2015.01.241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1254366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838815003394</els_id><sourcerecordid>1778015420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUgRKzYJHuflrhCqykOqxAbWlmuPU0eJXewUqX9PonTPajZnru49hNwDzYBC9dRmrew65fuMUSgzChkr4IIsgNd5WlTV6pIs6IqVKc85vyY3MbaUUljlsCDrjWusQwzWNcmAau985xuLMTE-JKY7Wp2oPfZWyS7Zn3TwDbokDj7IBpN4igP2t-TKyC7i3fkuyffr5mv9nm4_3z7WL9tUlSwfUg6oTcl5zmRpOFRAdzVXdWEUaMY0R6yYkVTtcFUWpqq1QpmbcQSXO613Vb4kD3Ouj4MVUdmpr_LOoRoEsLLIqwl6nKFD8D9HjIPobVTYddKhP0YBdc1HSwWjI1rOqAo-xoBGHILtZTgJoGIyK1pxNisms4KCGM2Of8_zH45jfy2GqQs6hdqGqYr29p-EP_2ThVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778015420</pqid></control><display><type>article</type><title>Engineering technologies for fluid chemical hydrogen storage system</title><source>Elsevier ScienceDirect Journals</source><creator>van Hassel, Bart A. ; McGee, Randolph C. ; Murray, Allen ; Zhang, Shiling</creator><creatorcontrib>van Hassel, Bart A. ; McGee, Randolph C. ; Murray, Allen ; Zhang, Shiling</creatorcontrib><description>•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines.
An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2015.01.241</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alloys ; Chemical hydrogen storage ; Critical gas velocity ; Droplet size distribution ; Droplets ; Fluid dynamics ; Fluid flow ; Gas/liquid separation ; Hydrogen quality ; Hydrogen storage ; Liquids ; On-board hydrogen storage ; Onboard ; Vehicles</subject><ispartof>Journal of alloys and compounds, 2015-10, Vol.645 (S1), p.S41-S45</ispartof><rights>2015 United Technologies Corporation.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</citedby><cites>FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838815003394$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1254366$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>van Hassel, Bart A.</creatorcontrib><creatorcontrib>McGee, Randolph C.</creatorcontrib><creatorcontrib>Murray, Allen</creatorcontrib><creatorcontrib>Zhang, Shiling</creatorcontrib><title>Engineering technologies for fluid chemical hydrogen storage system</title><title>Journal of alloys and compounds</title><description>•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines.
An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity.</description><subject>Alloys</subject><subject>Chemical hydrogen storage</subject><subject>Critical gas velocity</subject><subject>Droplet size distribution</subject><subject>Droplets</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gas/liquid separation</subject><subject>Hydrogen quality</subject><subject>Hydrogen storage</subject><subject>Liquids</subject><subject>On-board hydrogen storage</subject><subject>Onboard</subject><subject>Vehicles</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUgRKzYJHuflrhCqykOqxAbWlmuPU0eJXewUqX9PonTPajZnru49hNwDzYBC9dRmrew65fuMUSgzChkr4IIsgNd5WlTV6pIs6IqVKc85vyY3MbaUUljlsCDrjWusQwzWNcmAau985xuLMTE-JKY7Wp2oPfZWyS7Zn3TwDbokDj7IBpN4igP2t-TKyC7i3fkuyffr5mv9nm4_3z7WL9tUlSwfUg6oTcl5zmRpOFRAdzVXdWEUaMY0R6yYkVTtcFUWpqq1QpmbcQSXO613Vb4kD3Ouj4MVUdmpr_LOoRoEsLLIqwl6nKFD8D9HjIPobVTYddKhP0YBdc1HSwWjI1rOqAo-xoBGHILtZTgJoGIyK1pxNisms4KCGM2Of8_zH45jfy2GqQs6hdqGqYr29p-EP_2ThVc</recordid><startdate>20151005</startdate><enddate>20151005</enddate><creator>van Hassel, Bart A.</creator><creator>McGee, Randolph C.</creator><creator>Murray, Allen</creator><creator>Zhang, Shiling</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20151005</creationdate><title>Engineering technologies for fluid chemical hydrogen storage system</title><author>van Hassel, Bart A. ; McGee, Randolph C. ; Murray, Allen ; Zhang, Shiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Chemical hydrogen storage</topic><topic>Critical gas velocity</topic><topic>Droplet size distribution</topic><topic>Droplets</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gas/liquid separation</topic><topic>Hydrogen quality</topic><topic>Hydrogen storage</topic><topic>Liquids</topic><topic>On-board hydrogen storage</topic><topic>Onboard</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Hassel, Bart A.</creatorcontrib><creatorcontrib>McGee, Randolph C.</creatorcontrib><creatorcontrib>Murray, Allen</creatorcontrib><creatorcontrib>Zhang, Shiling</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Hassel, Bart A.</au><au>McGee, Randolph C.</au><au>Murray, Allen</au><au>Zhang, Shiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering technologies for fluid chemical hydrogen storage system</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2015-10-05</date><risdate>2015</risdate><volume>645</volume><issue>S1</issue><spage>S41</spage><epage>S45</epage><pages>S41-S45</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines.
An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2015.01.241</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2015-10, Vol.645 (S1), p.S41-S45 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_osti_scitechconnect_1254366 |
source | Elsevier ScienceDirect Journals |
subjects | Alloys Chemical hydrogen storage Critical gas velocity Droplet size distribution Droplets Fluid dynamics Fluid flow Gas/liquid separation Hydrogen quality Hydrogen storage Liquids On-board hydrogen storage Onboard Vehicles |
title | Engineering technologies for fluid chemical hydrogen storage system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20technologies%20for%20fluid%20chemical%20hydrogen%20storage%20system&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=van%20Hassel,%20Bart%20A.&rft.date=2015-10-05&rft.volume=645&rft.issue=S1&rft.spage=S41&rft.epage=S45&rft.pages=S41-S45&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2015.01.241&rft_dat=%3Cproquest_osti_%3E1778015420%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778015420&rft_id=info:pmid/&rft_els_id=S0925838815003394&rfr_iscdi=true |