Engineering technologies for fluid chemical hydrogen storage system

•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2015-10, Vol.645 (S1), p.S41-S45
Hauptverfasser: van Hassel, Bart A., McGee, Randolph C., Murray, Allen, Zhang, Shiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S45
container_issue S1
container_start_page S41
container_title Journal of alloys and compounds
container_volume 645
creator van Hassel, Bart A.
McGee, Randolph C.
Murray, Allen
Zhang, Shiling
description •A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines. An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity.
doi_str_mv 10.1016/j.jallcom.2015.01.241
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1254366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838815003394</els_id><sourcerecordid>1778015420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUgRKzYJHuflrhCqykOqxAbWlmuPU0eJXewUqX9PonTPajZnru49hNwDzYBC9dRmrew65fuMUSgzChkr4IIsgNd5WlTV6pIs6IqVKc85vyY3MbaUUljlsCDrjWusQwzWNcmAau985xuLMTE-JKY7Wp2oPfZWyS7Zn3TwDbokDj7IBpN4igP2t-TKyC7i3fkuyffr5mv9nm4_3z7WL9tUlSwfUg6oTcl5zmRpOFRAdzVXdWEUaMY0R6yYkVTtcFUWpqq1QpmbcQSXO613Vb4kD3Ouj4MVUdmpr_LOoRoEsLLIqwl6nKFD8D9HjIPobVTYddKhP0YBdc1HSwWjI1rOqAo-xoBGHILtZTgJoGIyK1pxNisms4KCGM2Of8_zH45jfy2GqQs6hdqGqYr29p-EP_2ThVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778015420</pqid></control><display><type>article</type><title>Engineering technologies for fluid chemical hydrogen storage system</title><source>Elsevier ScienceDirect Journals</source><creator>van Hassel, Bart A. ; McGee, Randolph C. ; Murray, Allen ; Zhang, Shiling</creator><creatorcontrib>van Hassel, Bart A. ; McGee, Randolph C. ; Murray, Allen ; Zhang, Shiling</creatorcontrib><description>•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines. An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2015.01.241</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alloys ; Chemical hydrogen storage ; Critical gas velocity ; Droplet size distribution ; Droplets ; Fluid dynamics ; Fluid flow ; Gas/liquid separation ; Hydrogen quality ; Hydrogen storage ; Liquids ; On-board hydrogen storage ; Onboard ; Vehicles</subject><ispartof>Journal of alloys and compounds, 2015-10, Vol.645 (S1), p.S41-S45</ispartof><rights>2015 United Technologies Corporation.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</citedby><cites>FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838815003394$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1254366$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>van Hassel, Bart A.</creatorcontrib><creatorcontrib>McGee, Randolph C.</creatorcontrib><creatorcontrib>Murray, Allen</creatorcontrib><creatorcontrib>Zhang, Shiling</creatorcontrib><title>Engineering technologies for fluid chemical hydrogen storage system</title><title>Journal of alloys and compounds</title><description>•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines. An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity.</description><subject>Alloys</subject><subject>Chemical hydrogen storage</subject><subject>Critical gas velocity</subject><subject>Droplet size distribution</subject><subject>Droplets</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gas/liquid separation</subject><subject>Hydrogen quality</subject><subject>Hydrogen storage</subject><subject>Liquids</subject><subject>On-board hydrogen storage</subject><subject>Onboard</subject><subject>Vehicles</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUgRKzYJHuflrhCqykOqxAbWlmuPU0eJXewUqX9PonTPajZnru49hNwDzYBC9dRmrew65fuMUSgzChkr4IIsgNd5WlTV6pIs6IqVKc85vyY3MbaUUljlsCDrjWusQwzWNcmAau985xuLMTE-JKY7Wp2oPfZWyS7Zn3TwDbokDj7IBpN4igP2t-TKyC7i3fkuyffr5mv9nm4_3z7WL9tUlSwfUg6oTcl5zmRpOFRAdzVXdWEUaMY0R6yYkVTtcFUWpqq1QpmbcQSXO613Vb4kD3Ouj4MVUdmpr_LOoRoEsLLIqwl6nKFD8D9HjIPobVTYddKhP0YBdc1HSwWjI1rOqAo-xoBGHILtZTgJoGIyK1pxNisms4KCGM2Of8_zH45jfy2GqQs6hdqGqYr29p-EP_2ThVc</recordid><startdate>20151005</startdate><enddate>20151005</enddate><creator>van Hassel, Bart A.</creator><creator>McGee, Randolph C.</creator><creator>Murray, Allen</creator><creator>Zhang, Shiling</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20151005</creationdate><title>Engineering technologies for fluid chemical hydrogen storage system</title><author>van Hassel, Bart A. ; McGee, Randolph C. ; Murray, Allen ; Zhang, Shiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-81edf58832a5f81610b78c74fc1d22d8ee62fa0cbe954f67dcea3f1878abddb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Chemical hydrogen storage</topic><topic>Critical gas velocity</topic><topic>Droplet size distribution</topic><topic>Droplets</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gas/liquid separation</topic><topic>Hydrogen quality</topic><topic>Hydrogen storage</topic><topic>Liquids</topic><topic>On-board hydrogen storage</topic><topic>Onboard</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Hassel, Bart A.</creatorcontrib><creatorcontrib>McGee, Randolph C.</creatorcontrib><creatorcontrib>Murray, Allen</creatorcontrib><creatorcontrib>Zhang, Shiling</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Hassel, Bart A.</au><au>McGee, Randolph C.</au><au>Murray, Allen</au><au>Zhang, Shiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering technologies for fluid chemical hydrogen storage system</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2015-10-05</date><risdate>2015</risdate><volume>645</volume><issue>S1</issue><spage>S41</spage><epage>S45</epage><pages>S41-S45</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•A light-weight and compact gas–liquid-separator with a low profile, as required for light-duty automotive applications, was designed and tested.•Small droplets that entrain into the gas phase can form an oil film from which larger droplets can form.•The vapor pressure of liquid hydrogen carriers needs to be considered carefully in order to meet hydrogen quality guidelines. An efficient gas/liquid separator (GLS) was developed for separating hydrogen gas from spent liquid organic and inorganic hydrogen carriers onboard light-duty vehicles. The results show that the capacity of the GLS is sufficient for an 80kWe PEM fuel cell, as used in light-duty vehicle applications. A discrepancy was observed between the calculated droplet size distribution at the outlet of the GLS and the experimental results. This was explained by film formation and breakup inside the vortex finder when the GLS was operated at flow rates that exceeded its critical gas velocity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2015.01.241</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2015-10, Vol.645 (S1), p.S41-S45
issn 0925-8388
1873-4669
language eng
recordid cdi_osti_scitechconnect_1254366
source Elsevier ScienceDirect Journals
subjects Alloys
Chemical hydrogen storage
Critical gas velocity
Droplet size distribution
Droplets
Fluid dynamics
Fluid flow
Gas/liquid separation
Hydrogen quality
Hydrogen storage
Liquids
On-board hydrogen storage
Onboard
Vehicles
title Engineering technologies for fluid chemical hydrogen storage system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20technologies%20for%20fluid%20chemical%20hydrogen%20storage%20system&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=van%20Hassel,%20Bart%20A.&rft.date=2015-10-05&rft.volume=645&rft.issue=S1&rft.spage=S41&rft.epage=S45&rft.pages=S41-S45&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2015.01.241&rft_dat=%3Cproquest_osti_%3E1778015420%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778015420&rft_id=info:pmid/&rft_els_id=S0925838815003394&rfr_iscdi=true