Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning
[Display omitted] •First-principles calculations with Hubbard U correction and SQSs were employed.•Gibbs free energy function of individual phases was evaluated.•The magnetic field-T−x(Mn) dependent phase selections were predicted.•Single- or multiple-phase microstructure can be controlled by chemic...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2016-07, Vol.120 (C), p.117-126 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | C |
container_start_page | 117 |
container_title | Computational materials science |
container_volume | 120 |
creator | Zhou, S.H. Liu, C. Yao, Y.X. Du, Y. Zhang, L.J. Wang, C.-Z. Ho, K.-M. Kramer, M.J. |
description | [Display omitted]
•First-principles calculations with Hubbard U correction and SQSs were employed.•Gibbs free energy function of individual phases was evaluated.•The magnetic field-T−x(Mn) dependent phase selections were predicted.•Single- or multiple-phase microstructure can be controlled by chemical partitioning.•The magnetic properties can be tailored by controlling the microstructures.
BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggest that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. The compositions of the initial compounds from these highly driven liquids can be far from equilibrium. |
doi_str_mv | 10.1016/j.commatsci.2016.04.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1254316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025616301756</els_id><sourcerecordid>1815994482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a1cb6261cb83bd94f656e9bab456a5065530f7aeaf46167268bf595586eea8c3</originalsourceid><addsrcrecordid>eNqFkUGOFCEUhonRxHb0DBJXLqwSaKAod-PEcSaZiZvZE4p6NU2HghqgTPoK3saLeCYp27h1wyPwvZ_H_yP0lpKWEio_Hlsb59mUbF3L6kFLeFvLM7Sjqusbogh9jnakZ11DmJAv0aucj6QSvWI79OPePAYozuLP7j40v37i5WAy4HwK5QDZZbwkGJ0tLoZP-NqlXJoluWDd4iFja7xdvdluP-DakOY4noKZq17dgXfhEZsw4hADPK3OuyG5dcb2ABUxHi8mFbd1V_A1ejEZn-HN33qBHq6_PFzdNHffvt5eXd41ljNeGkPtIJmsq9oPY88nKST0gxm4kEYQKcSeTJ0BM3FJZcekGibRC6EkgFF2f4HenWVjLk5X1wrYg40hgC2aMsH3VFbo_RlaUnxaIRc9u2zBexMgrllTRUXfc65YRbszalPMOcGkqz-zSSdNid4S0kf9LyG9JaQJ1-TPI5fnTqi__e4gbdNAsNXvtA0zRvdfjd-QvKLN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815994482</pqid></control><display><type>article</type><title>Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, S.H. ; Liu, C. ; Yao, Y.X. ; Du, Y. ; Zhang, L.J. ; Wang, C.-Z. ; Ho, K.-M. ; Kramer, M.J.</creator><creatorcontrib>Zhou, S.H. ; Liu, C. ; Yao, Y.X. ; Du, Y. ; Zhang, L.J. ; Wang, C.-Z. ; Ho, K.-M. ; Kramer, M.J. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>[Display omitted]
•First-principles calculations with Hubbard U correction and SQSs were employed.•Gibbs free energy function of individual phases was evaluated.•The magnetic field-T−x(Mn) dependent phase selections were predicted.•Single- or multiple-phase microstructure can be controlled by chemical partitioning.•The magnetic properties can be tailored by controlling the microstructures.
BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggest that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. The compositions of the initial compounds from these highly driven liquids can be far from equilibrium.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2016.04.016</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Chemical partitioning ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Composition far from equilibrium ; Driving conditions ; First-principles calculation ; Hard magnetic MnBi ; Hubbard U correction ; Magnetic fields ; Materials science ; Mathematical models ; Partitioning ; Permanent magnets ; Synthesis (chemistry) ; Time dependence</subject><ispartof>Computational materials science, 2016-07, Vol.120 (C), p.117-126</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a1cb6261cb83bd94f656e9bab456a5065530f7aeaf46167268bf595586eea8c3</citedby><cites>FETCH-LOGICAL-c424t-a1cb6261cb83bd94f656e9bab456a5065530f7aeaf46167268bf595586eea8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025616301756$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1254316$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, S.H.</creatorcontrib><creatorcontrib>Liu, C.</creatorcontrib><creatorcontrib>Yao, Y.X.</creatorcontrib><creatorcontrib>Du, Y.</creatorcontrib><creatorcontrib>Zhang, L.J.</creatorcontrib><creatorcontrib>Wang, C.-Z.</creatorcontrib><creatorcontrib>Ho, K.-M.</creatorcontrib><creatorcontrib>Kramer, M.J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning</title><title>Computational materials science</title><description>[Display omitted]
•First-principles calculations with Hubbard U correction and SQSs were employed.•Gibbs free energy function of individual phases was evaluated.•The magnetic field-T−x(Mn) dependent phase selections were predicted.•Single- or multiple-phase microstructure can be controlled by chemical partitioning.•The magnetic properties can be tailored by controlling the microstructures.
BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggest that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. The compositions of the initial compounds from these highly driven liquids can be far from equilibrium.</description><subject>Chemical partitioning</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Composition far from equilibrium</subject><subject>Driving conditions</subject><subject>First-principles calculation</subject><subject>Hard magnetic MnBi</subject><subject>Hubbard U correction</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Partitioning</subject><subject>Permanent magnets</subject><subject>Synthesis (chemistry)</subject><subject>Time dependence</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUGOFCEUhonRxHb0DBJXLqwSaKAod-PEcSaZiZvZE4p6NU2HghqgTPoK3saLeCYp27h1wyPwvZ_H_yP0lpKWEio_Hlsb59mUbF3L6kFLeFvLM7Sjqusbogh9jnakZ11DmJAv0aucj6QSvWI79OPePAYozuLP7j40v37i5WAy4HwK5QDZZbwkGJ0tLoZP-NqlXJoluWDd4iFja7xdvdluP-DakOY4noKZq17dgXfhEZsw4hADPK3OuyG5dcb2ABUxHi8mFbd1V_A1ejEZn-HN33qBHq6_PFzdNHffvt5eXd41ljNeGkPtIJmsq9oPY88nKST0gxm4kEYQKcSeTJ0BM3FJZcekGibRC6EkgFF2f4HenWVjLk5X1wrYg40hgC2aMsH3VFbo_RlaUnxaIRc9u2zBexMgrllTRUXfc65YRbszalPMOcGkqz-zSSdNid4S0kf9LyG9JaQJ1-TPI5fnTqi__e4gbdNAsNXvtA0zRvdfjd-QvKLN</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Zhou, S.H.</creator><creator>Liu, C.</creator><creator>Yao, Y.X.</creator><creator>Du, Y.</creator><creator>Zhang, L.J.</creator><creator>Wang, C.-Z.</creator><creator>Ho, K.-M.</creator><creator>Kramer, M.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160701</creationdate><title>Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning</title><author>Zhou, S.H. ; Liu, C. ; Yao, Y.X. ; Du, Y. ; Zhang, L.J. ; Wang, C.-Z. ; Ho, K.-M. ; Kramer, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a1cb6261cb83bd94f656e9bab456a5065530f7aeaf46167268bf595586eea8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical partitioning</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Composition far from equilibrium</topic><topic>Driving conditions</topic><topic>First-principles calculation</topic><topic>Hard magnetic MnBi</topic><topic>Hubbard U correction</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Partitioning</topic><topic>Permanent magnets</topic><topic>Synthesis (chemistry)</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, S.H.</creatorcontrib><creatorcontrib>Liu, C.</creatorcontrib><creatorcontrib>Yao, Y.X.</creatorcontrib><creatorcontrib>Du, Y.</creatorcontrib><creatorcontrib>Zhang, L.J.</creatorcontrib><creatorcontrib>Wang, C.-Z.</creatorcontrib><creatorcontrib>Ho, K.-M.</creatorcontrib><creatorcontrib>Kramer, M.J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, S.H.</au><au>Liu, C.</au><au>Yao, Y.X.</au><au>Du, Y.</au><au>Zhang, L.J.</au><au>Wang, C.-Z.</au><au>Ho, K.-M.</au><au>Kramer, M.J.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning</atitle><jtitle>Computational materials science</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>120</volume><issue>C</issue><spage>117</spage><epage>126</epage><pages>117-126</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted]
•First-principles calculations with Hubbard U correction and SQSs were employed.•Gibbs free energy function of individual phases was evaluated.•The magnetic field-T−x(Mn) dependent phase selections were predicted.•Single- or multiple-phase microstructure can be controlled by chemical partitioning.•The magnetic properties can be tailored by controlling the microstructures.
BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggest that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. The compositions of the initial compounds from these highly driven liquids can be far from equilibrium.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2016.04.016</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2016-07, Vol.120 (C), p.117-126 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_osti_scitechconnect_1254316 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical partitioning CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Composition far from equilibrium Driving conditions First-principles calculation Hard magnetic MnBi Hubbard U correction Magnetic fields Materials science Mathematical models Partitioning Permanent magnets Synthesis (chemistry) Time dependence |
title | Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20BiMn-%CE%B1%20phase%20synthesis%20prediction:%20First-principles%20calculation,%20thermodynamic%20modeling%20and%20nonequilibrium%20chemical%20partitioning&rft.jtitle=Computational%20materials%20science&rft.au=Zhou,%20S.H.&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2016-07-01&rft.volume=120&rft.issue=C&rft.spage=117&rft.epage=126&rft.pages=117-126&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2016.04.016&rft_dat=%3Cproquest_osti_%3E1815994482%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815994482&rft_id=info:pmid/&rft_els_id=S0927025616301756&rfr_iscdi=true |