How resonance-continuum interference changes 750 GeV diphoton excess: signal enhancement and peak shift
A bstract A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background gg → γγ . The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-05, Vol.2016 (5), p.1-23, Article 9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2016 |
creator | Jung, Sunghoon Song, Jeonghyeon Yoon, Yeo Woong |
description | A
bstract
A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background
gg
→
γγ
. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ∼50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. We find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by
O
(1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant. |
doi_str_mv | 10.1007/JHEP05(2016)009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1253728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4044700871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-34f7031511663cbcda89fb39d58afe8cf334e15a02f79eab2be38ba4965fc5173</originalsourceid><addsrcrecordid>eNp1kb1vFDEQxVcIJEKgprWgCcUSf6zXNh2KQg4UCQqgtby-8a3DnX14vAr89_i0FBES1YxGv_c0M6_rXjL6llGqLj9trr9QecEpG99Qah51Z4xy0-tBmccP-qfdM8Q7Splkhp51u02-JwUwJ5c89D6nGtOyHEhMFUqAAm1M_OzSDpAoSckNfCfbeJxzzYnALw-I7wjGXXJ7Amk-2RwgVeLSlhzB_SA4x1Cfd0-C2yO8-FvPu28frr9ebfrbzzcfr97f9n5QqvZiCIqKthsbR-Env3XahEmYrdQugPZBiAGYdJQHZcBNfAKhJzeYUQYvmRLn3avVN2ONFn2s4Od2VQJfLeNSKK4bdLFCx5J_LoDVHiJ62O9dgrygZZpJo43kvKGv_0Hv8lLarY1SelSj5Mo06nKlfMmIBYI9lnhw5bdl1J7SsWs69pSObek0BV0V2Mj22_LA9z-SPw1QkRc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786765279</pqid></control><display><type>article</type><title>How resonance-continuum interference changes 750 GeV diphoton excess: signal enhancement and peak shift</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Jung, Sunghoon ; Song, Jeonghyeon ; Yoon, Yeo Woong</creator><creatorcontrib>Jung, Sunghoon ; Song, Jeonghyeon ; Yoon, Yeo Woong ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>A
bstract
A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background
gg
→
γγ
. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ∼50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. We find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by
O
(1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2016)009</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Benchmarking ; Beyond Standard Model ; Classical and Quantum Gravitation ; Distortion ; Elementary Particles ; Fermions ; Higgs physics ; High energy physics ; Interference ; Mathematical models ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Retarding ; Scalars ; scattering amplitudes ; String Theory ; Texts</subject><ispartof>The journal of high energy physics, 2016-05, Vol.2016 (5), p.1-23, Article 9</ispartof><rights>The Author(s) 2016</rights><rights>SISSA, Trieste, Italy 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-34f7031511663cbcda89fb39d58afe8cf334e15a02f79eab2be38ba4965fc5173</citedby><cites>FETCH-LOGICAL-c477t-34f7031511663cbcda89fb39d58afe8cf334e15a02f79eab2be38ba4965fc5173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP05(2016)009$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP05(2016)009$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1253728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Sunghoon</creatorcontrib><creatorcontrib>Song, Jeonghyeon</creatorcontrib><creatorcontrib>Yoon, Yeo Woong</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>How resonance-continuum interference changes 750 GeV diphoton excess: signal enhancement and peak shift</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background
gg
→
γγ
. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ∼50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. We find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by
O
(1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.</description><subject>Benchmarking</subject><subject>Beyond Standard Model</subject><subject>Classical and Quantum Gravitation</subject><subject>Distortion</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>Higgs physics</subject><subject>High energy physics</subject><subject>Interference</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Retarding</subject><subject>Scalars</subject><subject>scattering amplitudes</subject><subject>String Theory</subject><subject>Texts</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kb1vFDEQxVcIJEKgprWgCcUSf6zXNh2KQg4UCQqgtby-8a3DnX14vAr89_i0FBES1YxGv_c0M6_rXjL6llGqLj9trr9QecEpG99Qah51Z4xy0-tBmccP-qfdM8Q7Splkhp51u02-JwUwJ5c89D6nGtOyHEhMFUqAAm1M_OzSDpAoSckNfCfbeJxzzYnALw-I7wjGXXJ7Amk-2RwgVeLSlhzB_SA4x1Cfd0-C2yO8-FvPu28frr9ebfrbzzcfr97f9n5QqvZiCIqKthsbR-Env3XahEmYrdQugPZBiAGYdJQHZcBNfAKhJzeYUQYvmRLn3avVN2ONFn2s4Od2VQJfLeNSKK4bdLFCx5J_LoDVHiJ62O9dgrygZZpJo43kvKGv_0Hv8lLarY1SelSj5Mo06nKlfMmIBYI9lnhw5bdl1J7SsWs69pSObek0BV0V2Mj22_LA9z-SPw1QkRc</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Jung, Sunghoon</creator><creator>Song, Jeonghyeon</creator><creator>Yoon, Yeo Woong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Berlin</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160501</creationdate><title>How resonance-continuum interference changes 750 GeV diphoton excess: signal enhancement and peak shift</title><author>Jung, Sunghoon ; Song, Jeonghyeon ; Yoon, Yeo Woong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-34f7031511663cbcda89fb39d58afe8cf334e15a02f79eab2be38ba4965fc5173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benchmarking</topic><topic>Beyond Standard Model</topic><topic>Classical and Quantum Gravitation</topic><topic>Distortion</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>Higgs physics</topic><topic>High energy physics</topic><topic>Interference</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Retarding</topic><topic>Scalars</topic><topic>scattering amplitudes</topic><topic>String Theory</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Sunghoon</creatorcontrib><creatorcontrib>Song, Jeonghyeon</creatorcontrib><creatorcontrib>Yoon, Yeo Woong</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Sunghoon</au><au>Song, Jeonghyeon</au><au>Yoon, Yeo Woong</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How resonance-continuum interference changes 750 GeV diphoton excess: signal enhancement and peak shift</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>2016</volume><issue>5</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>9</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background
gg
→
γγ
. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ∼50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. We find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by
O
(1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP05(2016)009</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2016-05, Vol.2016 (5), p.1-23, Article 9 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_osti_scitechconnect_1253728 |
source | DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | Benchmarking Beyond Standard Model Classical and Quantum Gravitation Distortion Elementary Particles Fermions Higgs physics High energy physics Interference Mathematical models Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Retarding Scalars scattering amplitudes String Theory Texts |
title | How resonance-continuum interference changes 750 GeV diphoton excess: signal enhancement and peak shift |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20resonance-continuum%20interference%20changes%20750%20GeV%20diphoton%20excess:%20signal%20enhancement%20and%20peak%20shift&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Jung,%20Sunghoon&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2016-05-01&rft.volume=2016&rft.issue=5&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=9&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2016)009&rft_dat=%3Cproquest_osti_%3E4044700871%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786765279&rft_id=info:pmid/&rfr_iscdi=true |