A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices

We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2010-12, Vol.94 (12), p.2073-2077
Hauptverfasser: Li, Jian V., Li, Xiaonan, Albin, David S., Levi, Dean H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2077
container_issue 12
container_start_page 2073
container_title Solar energy materials and solar cells
container_volume 94
creator Li, Jian V.
Li, Xiaonan
Albin, David S.
Levi, Dean H.
description We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95 μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.
doi_str_mv 10.1016/j.solmat.2010.06.018
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1253105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024810003715</els_id><sourcerecordid>1777148236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-7ae7ede96b60fda5ca7226e064ea50970258ff7c137b1a8d2cd09e21a824f3c23</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhQtRsB39By6CILqw2rwqqdoIQ-MLBtyM65BKbtFpq5I2N93D4J83ZQ8uZ5WT8N2cnJymec3ollGmPh62mObFli2n9YiqLWX9k2bDej20Qgz902ZDB65bymX_vHmBeKCUciXkpvlzTRYo--RJSVVZPGUgGTBgCedQ7j-QJY1h_qds9MSOmPIImZR9cL8iIJIQ101spzAvpD7EZuJgnpHchbIn9nicg7MlpLha7PwtEA_n4ABfNs8mOyO8elivmp9fPt_uvrU3P75-313ftE6qobTaggYPgxoVnbztnNWcK6BKgu3ooCnv-mnSjgk9Mtt77jwdgFfJ5SQcF1fNm8u9qYYy6EIBt3cpRnDFMN4JRrsKvbtAx5x-nwCLWQKuOWyEdELTy0H2nexkJd8_SjKtNZM9F6qi8oK6nBAzTOaYw2LzvWHUrNWZg7lUZ9bqDFWmVlfH3j44WHR2nrKNLuD_WS5EpxRjlft04aD-3jlAXsNBdOBDXrP5FB43-gtUqbIF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777148236</pqid></control><display><type>article</type><title>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Jian V. ; Li, Xiaonan ; Albin, David S. ; Levi, Dean H.</creator><creatorcontrib>Li, Jian V. ; Li, Xiaonan ; Albin, David S. ; Levi, Dean H. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95 μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2010.06.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorber thickness ; Admittance spectroscopy ; Alloying ; Applied sciences ; Back contact ; Capacitance–voltage ; Carbon ; CdTe ; Copper ; Electrical resistivity ; Energy ; Equipments, installations and applications ; Etching ; Exact sciences and technology ; MATERIALS SCIENCE ; Mathematical models ; Mobility ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; Solar cells ; Solar cells. Photoelectrochemical cells ; SOLAR ENERGY</subject><ispartof>Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2073-2077</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-7ae7ede96b60fda5ca7226e064ea50970258ff7c137b1a8d2cd09e21a824f3c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2010.06.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23356611$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1253105$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jian V.</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><creatorcontrib>Albin, David S.</creatorcontrib><creatorcontrib>Levi, Dean H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</title><title>Solar energy materials and solar cells</title><description>We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95 μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.</description><subject>Absorber thickness</subject><subject>Admittance spectroscopy</subject><subject>Alloying</subject><subject>Applied sciences</subject><subject>Back contact</subject><subject>Capacitance–voltage</subject><subject>Carbon</subject><subject>CdTe</subject><subject>Copper</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Mobility</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>SOLAR ENERGY</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhQtRsB39By6CILqw2rwqqdoIQ-MLBtyM65BKbtFpq5I2N93D4J83ZQ8uZ5WT8N2cnJymec3ollGmPh62mObFli2n9YiqLWX9k2bDej20Qgz902ZDB65bymX_vHmBeKCUciXkpvlzTRYo--RJSVVZPGUgGTBgCedQ7j-QJY1h_qds9MSOmPIImZR9cL8iIJIQ101spzAvpD7EZuJgnpHchbIn9nicg7MlpLha7PwtEA_n4ABfNs8mOyO8elivmp9fPt_uvrU3P75-313ftE6qobTaggYPgxoVnbztnNWcK6BKgu3ooCnv-mnSjgk9Mtt77jwdgFfJ5SQcF1fNm8u9qYYy6EIBt3cpRnDFMN4JRrsKvbtAx5x-nwCLWQKuOWyEdELTy0H2nexkJd8_SjKtNZM9F6qi8oK6nBAzTOaYw2LzvWHUrNWZg7lUZ9bqDFWmVlfH3j44WHR2nrKNLuD_WS5EpxRjlft04aD-3jlAXsNBdOBDXrP5FB43-gtUqbIF</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Li, Jian V.</creator><creator>Li, Xiaonan</creator><creator>Albin, David S.</creator><creator>Levi, Dean H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20101201</creationdate><title>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</title><author>Li, Jian V. ; Li, Xiaonan ; Albin, David S. ; Levi, Dean H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-7ae7ede96b60fda5ca7226e064ea50970258ff7c137b1a8d2cd09e21a824f3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorber thickness</topic><topic>Admittance spectroscopy</topic><topic>Alloying</topic><topic>Applied sciences</topic><topic>Back contact</topic><topic>Capacitance–voltage</topic><topic>Carbon</topic><topic>CdTe</topic><topic>Copper</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Mobility</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>SOLAR ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jian V.</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><creatorcontrib>Albin, David S.</creatorcontrib><creatorcontrib>Levi, Dean H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jian V.</au><au>Li, Xiaonan</au><au>Albin, David S.</au><au>Levi, Dean H.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>94</volume><issue>12</issue><spage>2073</spage><epage>2077</epage><pages>2073-2077</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95 μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2010.06.018</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2073-2077
issn 0927-0248
1879-3398
language eng
recordid cdi_osti_scitechconnect_1253105
source Elsevier ScienceDirect Journals Complete
subjects Absorber thickness
Admittance spectroscopy
Alloying
Applied sciences
Back contact
Capacitance–voltage
Carbon
CdTe
Copper
Electrical resistivity
Energy
Equipments, installations and applications
Etching
Exact sciences and technology
MATERIALS SCIENCE
Mathematical models
Mobility
Natural energy
Photovoltaic cells
Photovoltaic conversion
Solar cells
Solar cells. Photoelectrochemical cells
SOLAR ENERGY
title A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20measure%20resistivity,%20mobility,%20and%20absorber%20thickness%20in%20thin-film%20solar%20cells%20with%20application%20to%20CdTe%20devices&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Li,%20Jian%20V.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2010-12-01&rft.volume=94&rft.issue=12&rft.spage=2073&rft.epage=2077&rft.pages=2073-2077&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2010.06.018&rft_dat=%3Cproquest_osti_%3E1777148236%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777148236&rft_id=info:pmid/&rft_els_id=S0927024810003715&rfr_iscdi=true