A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices
We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free c...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2010-12, Vol.94 (12), p.2073-2077 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2077 |
---|---|
container_issue | 12 |
container_start_page | 2073 |
container_title | Solar energy materials and solar cells |
container_volume | 94 |
creator | Li, Jian V. Li, Xiaonan Albin, David S. Levi, Dean H. |
description | We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95
μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration. |
doi_str_mv | 10.1016/j.solmat.2010.06.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1253105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024810003715</els_id><sourcerecordid>1777148236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-7ae7ede96b60fda5ca7226e064ea50970258ff7c137b1a8d2cd09e21a824f3c23</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhQtRsB39By6CILqw2rwqqdoIQ-MLBtyM65BKbtFpq5I2N93D4J83ZQ8uZ5WT8N2cnJymec3ollGmPh62mObFli2n9YiqLWX9k2bDej20Qgz902ZDB65bymX_vHmBeKCUciXkpvlzTRYo--RJSVVZPGUgGTBgCedQ7j-QJY1h_qds9MSOmPIImZR9cL8iIJIQ101spzAvpD7EZuJgnpHchbIn9nicg7MlpLha7PwtEA_n4ABfNs8mOyO8elivmp9fPt_uvrU3P75-313ftE6qobTaggYPgxoVnbztnNWcK6BKgu3ooCnv-mnSjgk9Mtt77jwdgFfJ5SQcF1fNm8u9qYYy6EIBt3cpRnDFMN4JRrsKvbtAx5x-nwCLWQKuOWyEdELTy0H2nexkJd8_SjKtNZM9F6qi8oK6nBAzTOaYw2LzvWHUrNWZg7lUZ9bqDFWmVlfH3j44WHR2nrKNLuD_WS5EpxRjlft04aD-3jlAXsNBdOBDXrP5FB43-gtUqbIF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777148236</pqid></control><display><type>article</type><title>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Jian V. ; Li, Xiaonan ; Albin, David S. ; Levi, Dean H.</creator><creatorcontrib>Li, Jian V. ; Li, Xiaonan ; Albin, David S. ; Levi, Dean H. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95
μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2010.06.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorber thickness ; Admittance spectroscopy ; Alloying ; Applied sciences ; Back contact ; Capacitance–voltage ; Carbon ; CdTe ; Copper ; Electrical resistivity ; Energy ; Equipments, installations and applications ; Etching ; Exact sciences and technology ; MATERIALS SCIENCE ; Mathematical models ; Mobility ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; Solar cells ; Solar cells. Photoelectrochemical cells ; SOLAR ENERGY</subject><ispartof>Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2073-2077</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-7ae7ede96b60fda5ca7226e064ea50970258ff7c137b1a8d2cd09e21a824f3c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2010.06.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23356611$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1253105$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jian V.</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><creatorcontrib>Albin, David S.</creatorcontrib><creatorcontrib>Levi, Dean H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</title><title>Solar energy materials and solar cells</title><description>We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95
μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.</description><subject>Absorber thickness</subject><subject>Admittance spectroscopy</subject><subject>Alloying</subject><subject>Applied sciences</subject><subject>Back contact</subject><subject>Capacitance–voltage</subject><subject>Carbon</subject><subject>CdTe</subject><subject>Copper</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Mobility</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>SOLAR ENERGY</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhQtRsB39By6CILqw2rwqqdoIQ-MLBtyM65BKbtFpq5I2N93D4J83ZQ8uZ5WT8N2cnJymec3ollGmPh62mObFli2n9YiqLWX9k2bDej20Qgz902ZDB65bymX_vHmBeKCUciXkpvlzTRYo--RJSVVZPGUgGTBgCedQ7j-QJY1h_qds9MSOmPIImZR9cL8iIJIQ101spzAvpD7EZuJgnpHchbIn9nicg7MlpLha7PwtEA_n4ABfNs8mOyO8elivmp9fPt_uvrU3P75-313ftE6qobTaggYPgxoVnbztnNWcK6BKgu3ooCnv-mnSjgk9Mtt77jwdgFfJ5SQcF1fNm8u9qYYy6EIBt3cpRnDFMN4JRrsKvbtAx5x-nwCLWQKuOWyEdELTy0H2nexkJd8_SjKtNZM9F6qi8oK6nBAzTOaYw2LzvWHUrNWZg7lUZ9bqDFWmVlfH3j44WHR2nrKNLuD_WS5EpxRjlft04aD-3jlAXsNBdOBDXrP5FB43-gtUqbIF</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Li, Jian V.</creator><creator>Li, Xiaonan</creator><creator>Albin, David S.</creator><creator>Levi, Dean H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20101201</creationdate><title>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</title><author>Li, Jian V. ; Li, Xiaonan ; Albin, David S. ; Levi, Dean H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-7ae7ede96b60fda5ca7226e064ea50970258ff7c137b1a8d2cd09e21a824f3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorber thickness</topic><topic>Admittance spectroscopy</topic><topic>Alloying</topic><topic>Applied sciences</topic><topic>Back contact</topic><topic>Capacitance–voltage</topic><topic>Carbon</topic><topic>CdTe</topic><topic>Copper</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Mobility</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>SOLAR ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jian V.</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><creatorcontrib>Albin, David S.</creatorcontrib><creatorcontrib>Levi, Dean H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jian V.</au><au>Li, Xiaonan</au><au>Albin, David S.</au><au>Levi, Dean H.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>94</volume><issue>12</issue><spage>2073</spage><epage>2077</epage><pages>2073-2077</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We report a method developed upon coordinated admittance spectroscopy and capacitance–voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity—and mobility—is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric–phosphoric etch, (B) without Cu in the carbon paste after nitric–phosphoric etch, and (C) without Cu in the carbon paste and without nitric–phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95
μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2010.06.018</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2073-2077 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_osti_scitechconnect_1253105 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Absorber thickness Admittance spectroscopy Alloying Applied sciences Back contact Capacitance–voltage Carbon CdTe Copper Electrical resistivity Energy Equipments, installations and applications Etching Exact sciences and technology MATERIALS SCIENCE Mathematical models Mobility Natural energy Photovoltaic cells Photovoltaic conversion Solar cells Solar cells. Photoelectrochemical cells SOLAR ENERGY |
title | A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20measure%20resistivity,%20mobility,%20and%20absorber%20thickness%20in%20thin-film%20solar%20cells%20with%20application%20to%20CdTe%20devices&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Li,%20Jian%20V.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2010-12-01&rft.volume=94&rft.issue=12&rft.spage=2073&rft.epage=2077&rft.pages=2073-2077&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2010.06.018&rft_dat=%3Cproquest_osti_%3E1777148236%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777148236&rft_id=info:pmid/&rft_els_id=S0927024810003715&rfr_iscdi=true |