Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems
We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesia...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2012-09, Vol.60 (9), p.4281-4290 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4290 |
---|---|
container_issue | 9 |
container_start_page | 4281 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 60 |
creator | Baczewski, A. D. Dault, D. L. Shanker, B. |
description | We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems. |
doi_str_mv | 10.1109/TAP.2012.2207037 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1252694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6230628</ieee_id><sourcerecordid>26369933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUsQPG5NJtmYHEvxCyoWP9DbkiazGNluShJB_71bWnoKk3neGeYh5JyzCefMXL9NFxNgHCYA7IaJmwMy4nWtKwDgh2TEGNeVAfV5TE5y_h5KqaUckY-pc9hhsgU9ndlUMAfb09vfte1ziH2mbUy0fCF9sevg6WvsfsrwT2NLF5hC9MHRp5-uhOxsh3SR4rLDVT4lR63tMp7t3jF5v7t9mz1U8-f7x9l0XjmhoFRaOyfQo68lgnF-CRa0NMwuBUhlHEjt0SqwunXIW6nqpUZrhfGq5d4IMSaX27kxl9BkFwq6Lxf7Hl1pONSgjBwgtoVcijknbJt1Ciub_hrOmo29ZrDXbOw1O3tD5GobWdvNYW2yvQt5nwMllBnWD9zFlguIuG8rEEyBFv81kHky</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Baczewski, A. D. ; Dault, D. L. ; Shanker, B.</creator><creatorcontrib>Baczewski, A. D. ; Dault, D. L. ; Shanker, B. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2012.2207037</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Algorithm design and analysis ; Applied sciences ; Boundary conditions ; Convergence ; Diffraction, scattering, reflection ; Exact sciences and technology ; Fast methods ; frequency ; frequency selective surfaces ; Green's function methods ; Integral equations ; MATHEMATICS AND COMPUTING ; Periodic structures ; Radiocommunications ; Radiowave propagation ; selective surfaces ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2012-09, Vol.60 (9), p.4281-4290</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</citedby><cites>FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6230628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6230628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26369933$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1252694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baczewski, A. D.</creatorcontrib><creatorcontrib>Dault, D. L.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.</description><subject>Acceleration</subject><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Diffraction, scattering, reflection</subject><subject>Exact sciences and technology</subject><subject>Fast methods</subject><subject>frequency</subject><subject>frequency selective surfaces</subject><subject>Green's function methods</subject><subject>Integral equations</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Periodic structures</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>selective surfaces</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUsQPG5NJtmYHEvxCyoWP9DbkiazGNluShJB_71bWnoKk3neGeYh5JyzCefMXL9NFxNgHCYA7IaJmwMy4nWtKwDgh2TEGNeVAfV5TE5y_h5KqaUckY-pc9hhsgU9ndlUMAfb09vfte1ziH2mbUy0fCF9sevg6WvsfsrwT2NLF5hC9MHRp5-uhOxsh3SR4rLDVT4lR63tMp7t3jF5v7t9mz1U8-f7x9l0XjmhoFRaOyfQo68lgnF-CRa0NMwuBUhlHEjt0SqwunXIW6nqpUZrhfGq5d4IMSaX27kxl9BkFwq6Lxf7Hl1pONSgjBwgtoVcijknbJt1Ciub_hrOmo29ZrDXbOw1O3tD5GobWdvNYW2yvQt5nwMllBnWD9zFlguIuG8rEEyBFv81kHky</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Baczewski, A. D.</creator><creator>Dault, D. L.</creator><creator>Shanker, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120901</creationdate><title>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</title><author>Baczewski, A. D. ; Dault, D. L. ; Shanker, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Diffraction, scattering, reflection</topic><topic>Exact sciences and technology</topic><topic>Fast methods</topic><topic>frequency</topic><topic>frequency selective surfaces</topic><topic>Green's function methods</topic><topic>Integral equations</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Periodic structures</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>selective surfaces</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baczewski, A. D.</creatorcontrib><creatorcontrib>Dault, D. L.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baczewski, A. D.</au><au>Dault, D. L.</au><au>Shanker, B.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>60</volume><issue>9</issue><spage>4281</spage><epage>4290</epage><pages>4281-4290</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2012.2207037</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2012-09, Vol.60 (9), p.4281-4290 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_osti_scitechconnect_1252694 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Algorithm design and analysis Applied sciences Boundary conditions Convergence Diffraction, scattering, reflection Exact sciences and technology Fast methods frequency frequency selective surfaces Green's function methods Integral equations MATHEMATICS AND COMPUTING Periodic structures Radiocommunications Radiowave propagation selective surfaces Telecommunications Telecommunications and information theory |
title | Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Cartesian%20Expansions%20for%20the%20Rapid%20Solution%20of%20Periodic%20Multiscale%20Problems&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Baczewski,%20A.%20D.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2012-09-01&rft.volume=60&rft.issue=9&rft.spage=4281&rft.epage=4290&rft.pages=4281-4290&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2012.2207037&rft_dat=%3Cpascalfrancis_RIE%3E26369933%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6230628&rfr_iscdi=true |