Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems

We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2012-09, Vol.60 (9), p.4281-4290
Hauptverfasser: Baczewski, A. D., Dault, D. L., Shanker, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4290
container_issue 9
container_start_page 4281
container_title IEEE transactions on antennas and propagation
container_volume 60
creator Baczewski, A. D.
Dault, D. L.
Shanker, B.
description We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.
doi_str_mv 10.1109/TAP.2012.2207037
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1252694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6230628</ieee_id><sourcerecordid>26369933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUsQPG5NJtmYHEvxCyoWP9DbkiazGNluShJB_71bWnoKk3neGeYh5JyzCefMXL9NFxNgHCYA7IaJmwMy4nWtKwDgh2TEGNeVAfV5TE5y_h5KqaUckY-pc9hhsgU9ndlUMAfb09vfte1ziH2mbUy0fCF9sevg6WvsfsrwT2NLF5hC9MHRp5-uhOxsh3SR4rLDVT4lR63tMp7t3jF5v7t9mz1U8-f7x9l0XjmhoFRaOyfQo68lgnF-CRa0NMwuBUhlHEjt0SqwunXIW6nqpUZrhfGq5d4IMSaX27kxl9BkFwq6Lxf7Hl1pONSgjBwgtoVcijknbJt1Ciub_hrOmo29ZrDXbOw1O3tD5GobWdvNYW2yvQt5nwMllBnWD9zFlguIuG8rEEyBFv81kHky</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Baczewski, A. D. ; Dault, D. L. ; Shanker, B.</creator><creatorcontrib>Baczewski, A. D. ; Dault, D. L. ; Shanker, B. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2012.2207037</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Algorithm design and analysis ; Applied sciences ; Boundary conditions ; Convergence ; Diffraction, scattering, reflection ; Exact sciences and technology ; Fast methods ; frequency ; frequency selective surfaces ; Green's function methods ; Integral equations ; MATHEMATICS AND COMPUTING ; Periodic structures ; Radiocommunications ; Radiowave propagation ; selective surfaces ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2012-09, Vol.60 (9), p.4281-4290</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</citedby><cites>FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6230628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6230628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26369933$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1252694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baczewski, A. D.</creatorcontrib><creatorcontrib>Dault, D. L.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.</description><subject>Acceleration</subject><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Diffraction, scattering, reflection</subject><subject>Exact sciences and technology</subject><subject>Fast methods</subject><subject>frequency</subject><subject>frequency selective surfaces</subject><subject>Green's function methods</subject><subject>Integral equations</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Periodic structures</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>selective surfaces</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUsQPG5NJtmYHEvxCyoWP9DbkiazGNluShJB_71bWnoKk3neGeYh5JyzCefMXL9NFxNgHCYA7IaJmwMy4nWtKwDgh2TEGNeVAfV5TE5y_h5KqaUckY-pc9hhsgU9ndlUMAfb09vfte1ziH2mbUy0fCF9sevg6WvsfsrwT2NLF5hC9MHRp5-uhOxsh3SR4rLDVT4lR63tMp7t3jF5v7t9mz1U8-f7x9l0XjmhoFRaOyfQo68lgnF-CRa0NMwuBUhlHEjt0SqwunXIW6nqpUZrhfGq5d4IMSaX27kxl9BkFwq6Lxf7Hl1pONSgjBwgtoVcijknbJt1Ciub_hrOmo29ZrDXbOw1O3tD5GobWdvNYW2yvQt5nwMllBnWD9zFlguIuG8rEEyBFv81kHky</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Baczewski, A. D.</creator><creator>Dault, D. L.</creator><creator>Shanker, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120901</creationdate><title>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</title><author>Baczewski, A. D. ; Dault, D. L. ; Shanker, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-88cc3eded54e29cdb2a28490ab32469c248dea62a8fce1f465b8eaa39d6f1d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Diffraction, scattering, reflection</topic><topic>Exact sciences and technology</topic><topic>Fast methods</topic><topic>frequency</topic><topic>frequency selective surfaces</topic><topic>Green's function methods</topic><topic>Integral equations</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Periodic structures</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>selective surfaces</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baczewski, A. D.</creatorcontrib><creatorcontrib>Dault, D. L.</creatorcontrib><creatorcontrib>Shanker, B.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baczewski, A. D.</au><au>Dault, D. L.</au><au>Shanker, B.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>60</volume><issue>9</issue><spage>4281</spage><epage>4290</epage><pages>4281-4290</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. We also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2012.2207037</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2012-09, Vol.60 (9), p.4281-4290
issn 0018-926X
1558-2221
language eng
recordid cdi_osti_scitechconnect_1252694
source IEEE Electronic Library (IEL)
subjects Acceleration
Algorithm design and analysis
Applied sciences
Boundary conditions
Convergence
Diffraction, scattering, reflection
Exact sciences and technology
Fast methods
frequency
frequency selective surfaces
Green's function methods
Integral equations
MATHEMATICS AND COMPUTING
Periodic structures
Radiocommunications
Radiowave propagation
selective surfaces
Telecommunications
Telecommunications and information theory
title Accelerated Cartesian Expansions for the Rapid Solution of Periodic Multiscale Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Cartesian%20Expansions%20for%20the%20Rapid%20Solution%20of%20Periodic%20Multiscale%20Problems&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Baczewski,%20A.%20D.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2012-09-01&rft.volume=60&rft.issue=9&rft.spage=4281&rft.epage=4290&rft.pages=4281-4290&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2012.2207037&rft_dat=%3Cpascalfrancis_RIE%3E26369933%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6230628&rfr_iscdi=true