Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2015-08, Vol.463 (C), p.1009-1012
Hauptverfasser: Taylor, C.N., Shimada, M., Merrill, B.J., Akers, D.W., Hatano, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue C
container_start_page 1009
container_title Journal of nuclear materials
container_volume 463
creator Taylor, C.N.
Shimada, M.
Merrill, B.J.
Akers, D.W.
Hatano, Y.
description The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900°C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.
doi_str_mv 10.1016/j.jnucmat.2014.11.033
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1252225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311514008241</els_id><sourcerecordid>1746886421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-37142baf1b6e442a70a5f4904d0f85d96617f659a0d63046d16ba3e5f5123a2c3</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRSMEEs3AJyBFrNgkVPmV9Aqh4SmNxAbWltuu9LiV2MF2WhqJj8dNzx5WftxTpVt1m-Y1Qo-A6t2pP4XNLqb0DFD0iD1w_qTZ4TjwTowMnjY7AMY6jiifNy9yPgGA3IPcNb8_0pnmuC4UShundo3ZlxRDa0Lw9342xddHXsnW32zj-tBOMbU-nCkXf6xyOLaOtkLJb0u92ZhMIdeeo3e5cm2oYm3Y-ZSM83-1soVjLhReNs8mM2d69XjeND8_f_px-7W7-_7l2-2Hu85KlKXjAwp2MBMeFAnBzABGTmIPwsE0SrdXCodJyb0BpzgI5VAdDCc5SWTcMMtvmjfXvrF61tn6QvbexhDqVBqZZIzJCr29QmuKv7Y6nV58tjTPJlDcssZhAA4DwPgfqFDjqATDisorauv6cqJJr8kvJj1oBH1JT5_0Y3r6kp5G1DW9Wvf-Wkd1L2dP6WKbgiXn08W1i_4fHf4AqQuoYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746886421</pqid></control><display><type>article</type><title>Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten</title><source>Elsevier ScienceDirect Journals</source><creator>Taylor, C.N. ; Shimada, M. ; Merrill, B.J. ; Akers, D.W. ; Hatano, Y.</creator><creatorcontrib>Taylor, C.N. ; Shimada, M. ; Merrill, B.J. ; Akers, D.W. ; Hatano, Y.</creatorcontrib><description>The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900°C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2014.11.033</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Desorption ; Deuterium ; Doppler effect ; Exposure ; Heating ; High flux isotope reactors ; Positron annihilation spectroscopy ; Tungsten</subject><ispartof>Journal of nuclear materials, 2015-08, Vol.463 (C), p.1009-1012</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-37142baf1b6e442a70a5f4904d0f85d96617f659a0d63046d16ba3e5f5123a2c3</citedby><cites>FETCH-LOGICAL-c515t-37142baf1b6e442a70a5f4904d0f85d96617f659a0d63046d16ba3e5f5123a2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311514008241$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1252225$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, C.N.</creatorcontrib><creatorcontrib>Shimada, M.</creatorcontrib><creatorcontrib>Merrill, B.J.</creatorcontrib><creatorcontrib>Akers, D.W.</creatorcontrib><creatorcontrib>Hatano, Y.</creatorcontrib><title>Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten</title><title>Journal of nuclear materials</title><description>The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900°C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.</description><subject>Desorption</subject><subject>Deuterium</subject><subject>Doppler effect</subject><subject>Exposure</subject><subject>Heating</subject><subject>High flux isotope reactors</subject><subject>Positron annihilation spectroscopy</subject><subject>Tungsten</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkcuO1DAQRSMEEs3AJyBFrNgkVPmV9Aqh4SmNxAbWltuu9LiV2MF2WhqJj8dNzx5WftxTpVt1m-Y1Qo-A6t2pP4XNLqb0DFD0iD1w_qTZ4TjwTowMnjY7AMY6jiifNy9yPgGA3IPcNb8_0pnmuC4UShundo3ZlxRDa0Lw9342xddHXsnW32zj-tBOMbU-nCkXf6xyOLaOtkLJb0u92ZhMIdeeo3e5cm2oYm3Y-ZSM83-1soVjLhReNs8mM2d69XjeND8_f_px-7W7-_7l2-2Hu85KlKXjAwp2MBMeFAnBzABGTmIPwsE0SrdXCodJyb0BpzgI5VAdDCc5SWTcMMtvmjfXvrF61tn6QvbexhDqVBqZZIzJCr29QmuKv7Y6nV58tjTPJlDcssZhAA4DwPgfqFDjqATDisorauv6cqJJr8kvJj1oBH1JT5_0Y3r6kp5G1DW9Wvf-Wkd1L2dP6WKbgiXn08W1i_4fHf4AqQuoYA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Taylor, C.N.</creator><creator>Shimada, M.</creator><creator>Merrill, B.J.</creator><creator>Akers, D.W.</creator><creator>Hatano, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150801</creationdate><title>Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten</title><author>Taylor, C.N. ; Shimada, M. ; Merrill, B.J. ; Akers, D.W. ; Hatano, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-37142baf1b6e442a70a5f4904d0f85d96617f659a0d63046d16ba3e5f5123a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Desorption</topic><topic>Deuterium</topic><topic>Doppler effect</topic><topic>Exposure</topic><topic>Heating</topic><topic>High flux isotope reactors</topic><topic>Positron annihilation spectroscopy</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, C.N.</creatorcontrib><creatorcontrib>Shimada, M.</creatorcontrib><creatorcontrib>Merrill, B.J.</creatorcontrib><creatorcontrib>Akers, D.W.</creatorcontrib><creatorcontrib>Hatano, Y.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, C.N.</au><au>Shimada, M.</au><au>Merrill, B.J.</au><au>Akers, D.W.</au><au>Hatano, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten</atitle><jtitle>Journal of nuclear materials</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>463</volume><issue>C</issue><spage>1009</spage><epage>1012</epage><pages>1009-1012</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900°C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2014.11.033</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2015-08, Vol.463 (C), p.1009-1012
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1252225
source Elsevier ScienceDirect Journals
subjects Desorption
Deuterium
Doppler effect
Exposure
Heating
High flux isotope reactors
Positron annihilation spectroscopy
Tungsten
title Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20positron%20annihilation%20spectroscopy%20for%20investigating%20deuterium%20decorated%20voids%20in%20neutron-irradiated%20tungsten&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Taylor,%20C.N.&rft.date=2015-08-01&rft.volume=463&rft.issue=C&rft.spage=1009&rft.epage=1012&rft.pages=1009-1012&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2014.11.033&rft_dat=%3Cproquest_osti_%3E1746886421%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746886421&rft_id=info:pmid/&rft_els_id=S0022311514008241&rfr_iscdi=true