Faster solvers for large kinetic mechanisms using adaptive preconditioners

The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2015-01, Vol.35 (1), p.581-587
Hauptverfasser: McNenly, Matthew J., Whitesides, Russell A., Flowers, Daniel L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 1
container_start_page 581
container_title Proceedings of the Combustion Institute
container_volume 35
creator McNenly, Matthew J.
Whitesides, Russell A.
Flowers, Daniel L.
description The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.
doi_str_mv 10.1016/j.proci.2014.05.113
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1251897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748914001163</els_id><sourcerecordid>1677914638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwC1giJpYEX-zEzsCAEOVDlVhgtmznUlzSuNhuJf49DmVmuhve5_Tek2WXQEog0Nysy613xpYVAVaSugSgR9kMBKdFxQk7TnvNSMGZaE-zsxDWhFBOaD3LXhYqRPR5cMMefch75_NB-RXmn3bEaE2-QfOhRhs2Id8FO65y1alttHvMtx6NGzsbrRsTe56d9GoIePE359n74uHt_qlYvj4-398tC8MYxIJrpXXdamgpJdr0jFbaiKprddMI7AwIVumetA0QZC0z0IDRQnWcQi8QezrPrg53XYhWBmNjapiKjGiihKoG0fIUuj6EkpivHYYoNzYYHAY1otsFCQ3nLbCGihSlh6jxLgSPvdx6u1H-WwKRk165lr965aRXklomvYm6PVCYXt1b9FMTHA121k9FOmf_5X8AkJGFag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677914638</pqid></control><display><type>article</type><title>Faster solvers for large kinetic mechanisms using adaptive preconditioners</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>McNenly, Matthew J. ; Whitesides, Russell A. ; Flowers, Daniel L.</creator><creatorcontrib>McNenly, Matthew J. ; Whitesides, Russell A. ; Flowers, Daniel L.</creatorcontrib><description>The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2014.05.113</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive systems ; Chemical kinetics ; Combustion ; Computer simulation ; Differential equations ; Dynamical systems ; Jacobians ; Ordinary differential equation ; Preconditioner ; Reaction kinetics ; Reduction ; Solvers ; Sparse matrix</subject><ispartof>Proceedings of the Combustion Institute, 2015-01, Vol.35 (1), p.581-587</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</citedby><cites>FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.proci.2014.05.113$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1251897$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McNenly, Matthew J.</creatorcontrib><creatorcontrib>Whitesides, Russell A.</creatorcontrib><creatorcontrib>Flowers, Daniel L.</creatorcontrib><title>Faster solvers for large kinetic mechanisms using adaptive preconditioners</title><title>Proceedings of the Combustion Institute</title><description>The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.</description><subject>Adaptive systems</subject><subject>Chemical kinetics</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Jacobians</subject><subject>Ordinary differential equation</subject><subject>Preconditioner</subject><subject>Reaction kinetics</subject><subject>Reduction</subject><subject>Solvers</subject><subject>Sparse matrix</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwC1giJpYEX-zEzsCAEOVDlVhgtmznUlzSuNhuJf49DmVmuhve5_Tek2WXQEog0Nysy613xpYVAVaSugSgR9kMBKdFxQk7TnvNSMGZaE-zsxDWhFBOaD3LXhYqRPR5cMMefch75_NB-RXmn3bEaE2-QfOhRhs2Id8FO65y1alttHvMtx6NGzsbrRsTe56d9GoIePE359n74uHt_qlYvj4-398tC8MYxIJrpXXdamgpJdr0jFbaiKprddMI7AwIVumetA0QZC0z0IDRQnWcQi8QezrPrg53XYhWBmNjapiKjGiihKoG0fIUuj6EkpivHYYoNzYYHAY1otsFCQ3nLbCGihSlh6jxLgSPvdx6u1H-WwKRk165lr965aRXklomvYm6PVCYXt1b9FMTHA121k9FOmf_5X8AkJGFag</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>McNenly, Matthew J.</creator><creator>Whitesides, Russell A.</creator><creator>Flowers, Daniel L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Faster solvers for large kinetic mechanisms using adaptive preconditioners</title><author>McNenly, Matthew J. ; Whitesides, Russell A. ; Flowers, Daniel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Chemical kinetics</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Jacobians</topic><topic>Ordinary differential equation</topic><topic>Preconditioner</topic><topic>Reaction kinetics</topic><topic>Reduction</topic><topic>Solvers</topic><topic>Sparse matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNenly, Matthew J.</creatorcontrib><creatorcontrib>Whitesides, Russell A.</creatorcontrib><creatorcontrib>Flowers, Daniel L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNenly, Matthew J.</au><au>Whitesides, Russell A.</au><au>Flowers, Daniel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster solvers for large kinetic mechanisms using adaptive preconditioners</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>35</volume><issue>1</issue><spage>581</spage><epage>587</epage><pages>581-587</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2014.05.113</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2015-01, Vol.35 (1), p.581-587
issn 1540-7489
1873-2704
language eng
recordid cdi_osti_scitechconnect_1251897
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Adaptive systems
Chemical kinetics
Combustion
Computer simulation
Differential equations
Dynamical systems
Jacobians
Ordinary differential equation
Preconditioner
Reaction kinetics
Reduction
Solvers
Sparse matrix
title Faster solvers for large kinetic mechanisms using adaptive preconditioners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20solvers%20for%20large%20kinetic%20mechanisms%20using%20adaptive%20preconditioners&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=McNenly,%20Matthew%20J.&rft.date=2015-01-01&rft.volume=35&rft.issue=1&rft.spage=581&rft.epage=587&rft.pages=581-587&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2014.05.113&rft_dat=%3Cproquest_osti_%3E1677914638%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677914638&rft_id=info:pmid/&rft_els_id=S1540748914001163&rfr_iscdi=true