Faster solvers for large kinetic mechanisms using adaptive preconditioners
The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Combustion Institute 2015-01, Vol.35 (1), p.581-587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 1 |
container_start_page | 581 |
container_title | Proceedings of the Combustion Institute |
container_volume | 35 |
creator | McNenly, Matthew J. Whitesides, Russell A. Flowers, Daniel L. |
description | The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations. |
doi_str_mv | 10.1016/j.proci.2014.05.113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1251897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748914001163</els_id><sourcerecordid>1677914638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwC1giJpYEX-zEzsCAEOVDlVhgtmznUlzSuNhuJf49DmVmuhve5_Tek2WXQEog0Nysy613xpYVAVaSugSgR9kMBKdFxQk7TnvNSMGZaE-zsxDWhFBOaD3LXhYqRPR5cMMefch75_NB-RXmn3bEaE2-QfOhRhs2Id8FO65y1alttHvMtx6NGzsbrRsTe56d9GoIePE359n74uHt_qlYvj4-398tC8MYxIJrpXXdamgpJdr0jFbaiKprddMI7AwIVumetA0QZC0z0IDRQnWcQi8QezrPrg53XYhWBmNjapiKjGiihKoG0fIUuj6EkpivHYYoNzYYHAY1otsFCQ3nLbCGihSlh6jxLgSPvdx6u1H-WwKRk165lr965aRXklomvYm6PVCYXt1b9FMTHA121k9FOmf_5X8AkJGFag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677914638</pqid></control><display><type>article</type><title>Faster solvers for large kinetic mechanisms using adaptive preconditioners</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>McNenly, Matthew J. ; Whitesides, Russell A. ; Flowers, Daniel L.</creator><creatorcontrib>McNenly, Matthew J. ; Whitesides, Russell A. ; Flowers, Daniel L.</creatorcontrib><description>The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2014.05.113</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive systems ; Chemical kinetics ; Combustion ; Computer simulation ; Differential equations ; Dynamical systems ; Jacobians ; Ordinary differential equation ; Preconditioner ; Reaction kinetics ; Reduction ; Solvers ; Sparse matrix</subject><ispartof>Proceedings of the Combustion Institute, 2015-01, Vol.35 (1), p.581-587</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</citedby><cites>FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.proci.2014.05.113$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1251897$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McNenly, Matthew J.</creatorcontrib><creatorcontrib>Whitesides, Russell A.</creatorcontrib><creatorcontrib>Flowers, Daniel L.</creatorcontrib><title>Faster solvers for large kinetic mechanisms using adaptive preconditioners</title><title>Proceedings of the Combustion Institute</title><description>The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.</description><subject>Adaptive systems</subject><subject>Chemical kinetics</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Jacobians</subject><subject>Ordinary differential equation</subject><subject>Preconditioner</subject><subject>Reaction kinetics</subject><subject>Reduction</subject><subject>Solvers</subject><subject>Sparse matrix</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwC1giJpYEX-zEzsCAEOVDlVhgtmznUlzSuNhuJf49DmVmuhve5_Tek2WXQEog0Nysy613xpYVAVaSugSgR9kMBKdFxQk7TnvNSMGZaE-zsxDWhFBOaD3LXhYqRPR5cMMefch75_NB-RXmn3bEaE2-QfOhRhs2Id8FO65y1alttHvMtx6NGzsbrRsTe56d9GoIePE359n74uHt_qlYvj4-398tC8MYxIJrpXXdamgpJdr0jFbaiKprddMI7AwIVumetA0QZC0z0IDRQnWcQi8QezrPrg53XYhWBmNjapiKjGiihKoG0fIUuj6EkpivHYYoNzYYHAY1otsFCQ3nLbCGihSlh6jxLgSPvdx6u1H-WwKRk165lr965aRXklomvYm6PVCYXt1b9FMTHA121k9FOmf_5X8AkJGFag</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>McNenly, Matthew J.</creator><creator>Whitesides, Russell A.</creator><creator>Flowers, Daniel L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Faster solvers for large kinetic mechanisms using adaptive preconditioners</title><author>McNenly, Matthew J. ; Whitesides, Russell A. ; Flowers, Daniel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7babb59b19330bcf432bc82d9b668edc1842bf09610e494c161cb8ad731f8eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Chemical kinetics</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Jacobians</topic><topic>Ordinary differential equation</topic><topic>Preconditioner</topic><topic>Reaction kinetics</topic><topic>Reduction</topic><topic>Solvers</topic><topic>Sparse matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNenly, Matthew J.</creatorcontrib><creatorcontrib>Whitesides, Russell A.</creatorcontrib><creatorcontrib>Flowers, Daniel L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNenly, Matthew J.</au><au>Whitesides, Russell A.</au><au>Flowers, Daniel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster solvers for large kinetic mechanisms using adaptive preconditioners</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>35</volume><issue>1</issue><spage>581</spage><epage>587</epage><pages>581-587</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>The adaptive preconditioners developed in this paper substantially reduce the computational cost of integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent approaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders of magnitude faster than traditional implementations of the ODE solver where the Jacobian information is generated automatically via finite differences, and the factorization relies on standard, dense matrix operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the underlying system of differential equations. Consequently, the new method achieves its performance gains without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2014.05.113</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7489 |
ispartof | Proceedings of the Combustion Institute, 2015-01, Vol.35 (1), p.581-587 |
issn | 1540-7489 1873-2704 |
language | eng |
recordid | cdi_osti_scitechconnect_1251897 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Adaptive systems Chemical kinetics Combustion Computer simulation Differential equations Dynamical systems Jacobians Ordinary differential equation Preconditioner Reaction kinetics Reduction Solvers Sparse matrix |
title | Faster solvers for large kinetic mechanisms using adaptive preconditioners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20solvers%20for%20large%20kinetic%20mechanisms%20using%20adaptive%20preconditioners&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=McNenly,%20Matthew%20J.&rft.date=2015-01-01&rft.volume=35&rft.issue=1&rft.spage=581&rft.epage=587&rft.pages=581-587&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2014.05.113&rft_dat=%3Cproquest_osti_%3E1677914638%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677914638&rft_id=info:pmid/&rft_els_id=S1540748914001163&rfr_iscdi=true |