cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and Computing 2015-11, Vol.13 (C), p.1-11
Hauptverfasser: Ishida, E.E.O., Vitenti, S.D.P., Penna-Lima, M., Cisewski, J., de Souza, R.S., Trindade, A.M.M., Cameron, E., Busti, V.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we present cosmoabc, a Python ABC sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code is very flexible and can be easily coupled to an external simulator, while allowing to incorporate arbitrary distance and prior functions. As an example of practical application, we coupled cosmoabc with the numcosmo library and demonstrate how it can be used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function. cosmoabc is published under the GPLv3 license on PyPI and GitHub and documentation is available at http://goo.gl/SmB8EX.
ISSN:2213-1337
2213-1345
DOI:10.1016/j.ascom.2015.09.001