Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

2D simulation with grains spanning periodic boundary conditions. (a) initial grain structure, (b) final grain structure after 6000ns, (c) plot of the average grain area versus time. (a) and (b) are shaded by unique grain ID. Average grain area behaves the same for sixteen or more order parameters on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2016-04, Vol.115 (C), p.18-25
Hauptverfasser: Permann, Cody J., Tonks, Michael R., Fromm, Bradley, Gaston, Derek R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue C
container_start_page 18
container_title Computational materials science
container_volume 115
creator Permann, Cody J.
Tonks, Michael R.
Fromm, Bradley
Gaston, Derek R.
description 2D simulation with grains spanning periodic boundary conditions. (a) initial grain structure, (b) final grain structure after 6000ns, (c) plot of the average grain area versus time. (a) and (b) are shaded by unique grain ID. Average grain area behaves the same for sixteen or more order parameters once the grain tracker is activated. There fore, the model is evolving correctly (without coalescence). [Display omitted] Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reduce the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. The method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.
doi_str_mv 10.1016/j.commatsci.2015.12.042
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1251422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025615008186</els_id><sourcerecordid>1793245310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b4d73894f174d79db183356b63a60ef0cea4cb49b9bda8c71842b7b123fa81b63</originalsourceid><addsrcrecordid>eNqFkLtOxDAQRS0EEsvjG7CoaBI8jvMqV8tTAtGAKC3Hmex6lcTB9oL4exwtoqUZT3HuzPgQcgEsBQbF9TbVdhhU8NqknEGeAk-Z4AdkAVVZJ6xicEgWrOZlwnheHJMT77csJuuKL8j7i2vR0Uk5NWCIncNkUNNkxjVV_do6EzYD7ayj2Q2dNsoj7Qz2LR1siz21HV07ZcZY7VfY0J2fg3e3z2fkqFO9x_Pf95S83d2-rh6Sp5f7x9XyKdGCi5A0oi2zqhYdlLGr2waqLMuLpshUwbBjGpXQjaibumlVpUuoBG_KBnjWqQoidkou93OtD0ZGBwH1RttxRB0k8BwE5xG62kOTsx879EEOxmvsezWi3XkJZZ1xkWfAIlruUe2s9w47OTkzKPctgcnZt9zKP99y9h23yOg7Jpf7JMbvfhp08zU4amyNm49prfl3xg8a8YzK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793245310</pqid></control><display><type>article</type><title>Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Permann, Cody J. ; Tonks, Michael R. ; Fromm, Bradley ; Gaston, Derek R.</creator><creatorcontrib>Permann, Cody J. ; Tonks, Michael R. ; Fromm, Bradley ; Gaston, Derek R. ; Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><description>2D simulation with grains spanning periodic boundary conditions. (a) initial grain structure, (b) final grain structure after 6000ns, (c) plot of the average grain area versus time. (a) and (b) are shaded by unique grain ID. Average grain area behaves the same for sixteen or more order parameters once the grain tracker is activated. There fore, the model is evolving correctly (without coalescence). [Display omitted] Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reduce the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. The method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2015.12.042</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>3D modeling ; Algorithms ; Computation ; Computer simulation ; Finite element ; Finite element method ; Grain growth ; Grains ; MATERIALS SCIENCE ; Mathematical models ; MATHEMATICS AND COMPUTING ; MOOSE ; Order parameters ; PF method</subject><ispartof>Computational materials science, 2016-04, Vol.115 (C), p.18-25</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b4d73894f174d79db183356b63a60ef0cea4cb49b9bda8c71842b7b123fa81b63</citedby><cites>FETCH-LOGICAL-c424t-b4d73894f174d79db183356b63a60ef0cea4cb49b9bda8c71842b7b123fa81b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025615008186$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1251422$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Permann, Cody J.</creatorcontrib><creatorcontrib>Tonks, Michael R.</creatorcontrib><creatorcontrib>Fromm, Bradley</creatorcontrib><creatorcontrib>Gaston, Derek R.</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM</title><title>Computational materials science</title><description>2D simulation with grains spanning periodic boundary conditions. (a) initial grain structure, (b) final grain structure after 6000ns, (c) plot of the average grain area versus time. (a) and (b) are shaded by unique grain ID. Average grain area behaves the same for sixteen or more order parameters once the grain tracker is activated. There fore, the model is evolving correctly (without coalescence). [Display omitted] Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reduce the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. The method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.</description><subject>3D modeling</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Finite element</subject><subject>Finite element method</subject><subject>Grain growth</subject><subject>Grains</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>MOOSE</subject><subject>Order parameters</subject><subject>PF method</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAQRS0EEsvjG7CoaBI8jvMqV8tTAtGAKC3Hmex6lcTB9oL4exwtoqUZT3HuzPgQcgEsBQbF9TbVdhhU8NqknEGeAk-Z4AdkAVVZJ6xicEgWrOZlwnheHJMT77csJuuKL8j7i2vR0Uk5NWCIncNkUNNkxjVV_do6EzYD7ayj2Q2dNsoj7Qz2LR1siz21HV07ZcZY7VfY0J2fg3e3z2fkqFO9x_Pf95S83d2-rh6Sp5f7x9XyKdGCi5A0oi2zqhYdlLGr2waqLMuLpshUwbBjGpXQjaibumlVpUuoBG_KBnjWqQoidkou93OtD0ZGBwH1RttxRB0k8BwE5xG62kOTsx879EEOxmvsezWi3XkJZZ1xkWfAIlruUe2s9w47OTkzKPctgcnZt9zKP99y9h23yOg7Jpf7JMbvfhp08zU4amyNm49prfl3xg8a8YzK</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Permann, Cody J.</creator><creator>Tonks, Michael R.</creator><creator>Fromm, Bradley</creator><creator>Gaston, Derek R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160401</creationdate><title>Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM</title><author>Permann, Cody J. ; Tonks, Michael R. ; Fromm, Bradley ; Gaston, Derek R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b4d73894f174d79db183356b63a60ef0cea4cb49b9bda8c71842b7b123fa81b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D modeling</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Finite element</topic><topic>Finite element method</topic><topic>Grain growth</topic><topic>Grains</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>MOOSE</topic><topic>Order parameters</topic><topic>PF method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Permann, Cody J.</creatorcontrib><creatorcontrib>Tonks, Michael R.</creatorcontrib><creatorcontrib>Fromm, Bradley</creatorcontrib><creatorcontrib>Gaston, Derek R.</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Permann, Cody J.</au><au>Tonks, Michael R.</au><au>Fromm, Bradley</au><au>Gaston, Derek R.</au><aucorp>Idaho National Lab. (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM</atitle><jtitle>Computational materials science</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>115</volume><issue>C</issue><spage>18</spage><epage>25</epage><pages>18-25</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>2D simulation with grains spanning periodic boundary conditions. (a) initial grain structure, (b) final grain structure after 6000ns, (c) plot of the average grain area versus time. (a) and (b) are shaded by unique grain ID. Average grain area behaves the same for sixteen or more order parameters once the grain tracker is activated. There fore, the model is evolving correctly (without coalescence). [Display omitted] Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reduce the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. The method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2015.12.042</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2016-04, Vol.115 (C), p.18-25
issn 0927-0256
1879-0801
language eng
recordid cdi_osti_scitechconnect_1251422
source Elsevier ScienceDirect Journals Complete
subjects 3D modeling
Algorithms
Computation
Computer simulation
Finite element
Finite element method
Grain growth
Grains
MATERIALS SCIENCE
Mathematical models
MATHEMATICS AND COMPUTING
MOOSE
Order parameters
PF method
title Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%20parameter%20re-mapping%20algorithm%20for%203D%20phase%20field%20model%20of%20grain%20growth%20using%20FEM&rft.jtitle=Computational%20materials%20science&rft.au=Permann,%20Cody%20J.&rft.aucorp=Idaho%20National%20Lab.%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2016-04-01&rft.volume=115&rft.issue=C&rft.spage=18&rft.epage=25&rft.pages=18-25&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2015.12.042&rft_dat=%3Cproquest_osti_%3E1793245310%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793245310&rft_id=info:pmid/&rft_els_id=S0927025615008186&rfr_iscdi=true